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Abstract:    In any statistical analysis the adopted model should be chosen to suit the aim of the analysis. An 
example in rare event modeling might be the description of tail behavior in a distribution. In these situations 
it may be useful to combine several distinct model choice criteria which emphasize different aspects of 
model-fit in discriminating amongst models, so as to ensure their suitability to the specific inferential aim.  

In this paper we consider the problem of estimating the reliability of a given system. As a concrete example, 
we consider the problem of assessing the failure characteristics of a certain type of aircraft air-conditioner 
unit commonly used to control cabin temperatures in a certain type of passenger aircraft used by most airlines 
around the world. In this case, interest is less focused on the overall fit of a model and more on the goodness-
of-fit of the model to the tails of the distribution, since these regions represent the more extreme reliability 
outcomes.  

We consider four statistical distributions that are commonly employed in reliability settings: exponential, 
gamma, log-normal and the standard (2 parameter) Weibull distribution. These are formulated in a Bayesian 
setting with standard uninformative priors, and applied to the example problem discussed above.  

A combination of two established approaches to model performance assessment is employed. The first is a 
measure of a model’s overall goodness-of-fit, namely the Deviance Information Criterion (DIC). The second 
forms a class of measures for predictive performance called Posterior Predictive Checks (PPCs), and these 
can be readily tailored to assess model-fit to specific regions of interest. In our application we show that the 
choice of model indeed depends on whether emphasis is on best overall fit of a model to the data, or on more 
tailored assessment. The Gamma and Weibull models provide the best overall fit to the data based on the 
DIC. However, the upper and lower 10% of the data is predicted better by the log-normal model, a fact that 
would be overlooked if model selection were based on the DIC alone. The middle part of the data is predicted 
best by the gamma model.   

Compared with the analogous frequentist assessment of model fit, which uses calculations based on point 
estimates of parameters without carrying their inherent uncertainty through to the final goodness-of-fit 
statistic, our approach fully incorporates uncertainty in parameter estimates via the posterior distribution.  

Keywords: Reliability, Model discrimination, Bayesian models, Deviance Information Criterion (DIC), 
Posterior Predictive Checks (PPC), Rare event simulation. 
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1. INTRODUCTION 

In many statistical analyses, a large part of the work is in formulating models relevant to the inferential aim, 
and then discriminating between them. For example, in a mechanical reliability setting, interest might be in 
quantifying the risk of a failure event prior to a scheduled maintenance event. In such a situation, we are not 
only interested in the high–density region of a failure distribution but also in the lower–density regions which 
characterize rarer events. It is therefore of interest to consider model comparisons tailored to emphasize local 
regions of the data space as well as the more common whole-of-distribution comparisions. 

Alston et al. (2005) briefly review some popular approaches to model comparison in a Bayesian framework, 
considering the advantages and disadvantages of each approach in the practical context of mixture models. 
Three main approaches under a Bayesian framework are identified, namely methods based on separate 
estimation of  the parameters of potential models, methods based on comparative estimation of potential-
model parameters and methods based on simultaneous estimation of potential-model parameters. Separate 
estimation approaches include posterior predictive distributions and posterior predictive checks, Bayes 
factors and approximations such as the Bayesian Information Criterion (BIC) and Deviance Information 
Criterion (DIC). Comparative approaches include the use of distance measures such as entropy distance or 
Kullback-Leibler divergence. Simultaneous methods include reversible jump MCMC and birth and death 
processes. Further reviews in the area of Bayesian model selection include Spiegelhalter et al. (2002) and 
Carlin and Chib (1995). All of the approaches discussed in these articles consider the goodness-of-fit of 
models to the scope of the whole of the data. It is apparent that tailored, local assessment of models is not 
common: an informal look at twelve beginners-to-advanced Bayesian textbooks, published over the last 
fifteen years, shows only three books that mention posterior predictive checks (see, Congdon, 2006; Gelman 
et al. 1996; and Geweke, 2005), only one of which considers, almost as a passing issue, the notion of 
tailoring model assessment to local regions of the data.   

In this paper we consider combining two common methods for model comparison, both of which fall under 
the realm of separate estimation methods. A standard model assessment approach used in a maximum 
likelihood setting relies on statistical or information–theoretic criteria that quantify, in some sense, the overall 
discrepancy of the model in fitting the data. Assessment of model fit to specific, desirable regions, of the data 
space is rarely considered, as discussed above. We believe that a combination of model goodness–of–fit 
criteria should be employed to this end. A Bayesian framework is particularly amenable to this task, 
especially with respect to assessing model goodness–of–fit to certain desired sub-regions of the data space.  

We demonstrate one combined approach to assessing model goodness–of–fit and make application to a 
concrete example taken from a reliability setting. Al-Garni et al. (2006) published an assessment of the 
failure characteristics of a certain type of air–conditioner cooling–pack used to control cabin temperatures in 
a common type of passenger aircraft used by most airlines around the world. Their data recorded cumulative 
failure times measured in flight hours, for both left and right side cooling packs (see Table 1). They 
considered the failure data at the level of individual components, combining data for each component across 
8 different cooling–packs: left and right packs from each of four distinct aircraft. Data from only two of these 
units is available to us. As a result, we make the assumption that the components form a homogeneous set, 
and therefore consider system failures to correspond precisely to component failures.  

This paper follows a similar pattern of model development, fitting a selection of the models used in the 
original analysis (Al-Garni et al., 2006). To consider the overall fit of each model we make use of the 
deviance information criterion (DIC). We also employ some common posterior predictive checks (PPCs) to 
consider both overall model fit and tail behaviour.  

 

Table 1. Cumulative failure times for left and right air-conditioning/cooling packs. Times are recorded in 
flight hours. 

Left AC Unit Right AC Unit 

Failure time   Status  Component  Failure time  Status  Component 

90.88 F Water Separator (WS) 63.04 F WS 

111.93 F WS 112.18 F Low-limit Valve (LLV) 

168.01 F WS 167.72 F WS 

333.52 F Heat Exchanger (HE) 269.27 F WS 

604.25 F WS 604.25 F WS 

688.13 F WS 688.13 F Shutoff Valve (SV) 
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842.17 F Compressor Discharge (CD) 794 F WS 

948.72 F WS 1016.6 F WS 

1106.93 F WS 1393.58 F WS 

1405.68 F WS 1568.24 F WS 

1445.22 F Air-cycle machine (ACM) 1603.43 F Panel Switch (PS) 

1568.24 F WS 1649.14 F HE 

1603.43 F WS 1688.26 F WS 

1649.14 F HE 1851.84 F CD 

1796.84 F WS 2042.74 F ACM 

1804.21 F WS 2360.54 F WS 

2010.74 F WS 2378.01 F SV 

2231.63 F Ram inlet actuator (RIA) 2459.37 F WS 

2378.01 F WS 2476.17 F WS 

2459.37 F WS 2607.41 F WS 

2481.57 F PS 2680.23 F WS 

2607.41 F WS 2691.87 F WS 

2676.58 F WS 2765.43 F Ram Air (RA) 

2731.53 F SV 2812.93 F WS 

2765.43 F WS 2874.6 F CD 

2814.1 F HE 3082.42 F WS 

2855.58 F WS 3212.05 F HE 

2990.27 F CD 3368.9 F WS 

3046.54 F WS 3717.82 F WS 

3212.05 F HE 3901.38 F WS 

3368.9 F WS 4014.72 F ACM 

3405.62 F ACM 4098.58 F WS 

3513.53 F WS 4213.4 F PS 

3888.26 F WS 43557.17 F WS 

4098.58 F WS 4810.06 S -- 

4423.9 F LLV    

4578.89 F WS    

4736.8 F WS    

4810.06 S --    

 

2. METHODS 

Al-Garni et al. (2006) use maximum likelihood methods to produce parameter estimates for six commonly 
used time–to–event models: exponential, gamma, log-normal, 2 and 3 parameter Weibull, as well as a two-
component mixture of Weibull densities and a phase-shifted bi-Weibull model. We consider fitting four of 
these models, as listed for a time–to–failure, t: 

(M1) Exponential Model 

 ( )( ; ) expf t tλ λ λ= − ; 

(M2) Gamma Model 

 ( )( ; , ) exp
( )

f t t
αλ

α λ λ
α

= −
Γ

; 

(M3) Log-Normal Model 

 ( )
1
2 1 2

( ; , ) exp log( )
2 2

f t t
t

τ τ
μ τ μ

π
= − −   
      

; 
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(M4) Weibull Model 

 ( )1( ; , ) expf t t tα αα λ αλ λ−′ ′ ′= − . 

In the above, we use α  to denote shape parameters and λ to denote rate parameters. For identifiability, when 
there is need to distinguish between parameters coming from different models, the parameters will be 
subscripted with their associated model labels: M1 through M4. For model 3 we follow the Bayesian 
conventional notation for a log-normal density, namely for μ  the location parameter and τ  for the precision 

(inverse–variance) parameter. In model 4 we employ αλ λ′ = , where α  and λ  are the respective shape and 
rate parameters of the Weibull density. In all cases, 0 α< < ∞ , 0 λ< < ∞ . Also μ−∞ < < ∞ , 0 τ< < ∞ , 

0 λ′< < ∞   and 0 t< ≤ ∞ .  

In order to emphasize the role of the model and corresponding likelihood, we follow advice given by Press 
(2003) in choosing improper, flat priors for the model parameters. These are implemented on the natural 
logarithm scale for parameters defined on the non–negative real line and on the identity scale for parameters 
defined on the entire real line. Of course, in many practical situations substantive prior information may be 
available and it will be desirable to encode this into appropriate proper prior probability models. This is, 
indeed, one of the primary practical motivations for the use of the Bayesian approach. 

For model comparisons we employ the DIC as a measure of a model’s overall goodness-of-fit to data. The 

DIC is defined as ( ) ( )DIC D pDθ θ= − , where ( )D θ  is the expectation of the deviance for the model with 

parameter vector θ and pD is a penalty term representing the effective number of parameters in the model 

(Press,  2003). PPCs are used to consider the goodness-of-fit of a model to particular regions of the support 
of the posterior.  A PPC is based on simulated replicate datasets from the posterior predictive distribution 

( | ) ( | ) ( | )
rep rep

p y y p y p y dθ θ θ
θ

=   that correspond to the observed data. A set of simulated 

observations,
( )

,  1, , ;  1, ,
m

y i N m Mi = =  where N is the size of the sample data, and M is the size of 

the simulation data, is drawn from the posterior predictive distribution. Various summary or discrepancy 

statistics, 
{( )}

( )
m

t y , are then evaluated for each m .  For example, 
{( )}

( ) min
m

t y y= indicates that for each 

of the M simulated datasets of size ,N  the minimum observation is recorded to produce an empirical 

distribution of posterior predictive minimum observations, 
{( )}

( ( ) | )
m

p t y y . This is then compared to the 

observed minimum observation to give a sense of how well the model predicts the low extreme of the 

observed data. More generally, any statistic 
{( )}

( )
m

t y  may be employed and the posterior predictive 

distribution of the 
{( )}

( ( ) | )
m

p t y y  compared to the value of the statistic evaluated on the observed data (for 

more details, see Gelman et al. (1996)). The advantage of posterior predictive checks is in their flexibility: 
they can be tailored to consider any desired aspect of a distribution.  

Each of the models was implemented directly in the OpenBUGS software (Thomas et al., 2006). Chains were 
intialised by randomly drawing starting parameter values from their respective marginal priors. We consider 
a single, long–running chain for each model. We take a sequential confirmatory approach: initially a chain is 
updated for a small number of iterations (eg. 1000); autocorrelations and cross–correlations are assessed 
using the functionality provided in OpenBUGS and CODA (Plummer et al., 2008), and an appropriate 
thinning lag is decided upon; the Raftery and Lewis diagnostic (Raftery and Lewis., 1992) is employed to 
obtain an estimate of the burn-in period required in order to be able to estimate a predetermined quantile q  to 

an accuracy of r±  with a certainty of s ; the chain is updated according to the Raftery and Lewis suggested 
burn-in and the Heidelberger and Welch (Heidelberger and Welch., 1983) approach to convergence 
assessment is invoked and a decision is made as to how to proceed based on whether this diagnostic confirms 
convergence. For all the models in this study, we use 0.025q = , 0.0005r = ± and 0.99s = , so that in 

principle, we should be able to determine a two-sided, 95% CrI for the marginal posterior of each parameter 
to within 3 decimal places with 99% certainty. Once we are satisfied that convergence has been reached, we 
save the state of the chain and update the model for a further 1 million iterations, so that for example, an 
event that occurs as rarely as 1% of the time is expected to be simulated about ten–thousand times. This chain 
is used, via R, to produce posterior summaries of quantities of interest. Also, many replicate datasets are 
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simulated from the posterior predictive densities and these are used to assess model fit, both to the whole of 
the observed data and to the tail regions. 

3. RESULTS 

Table 2 presents the modes of the posterior predictive checks for the 10th, 50th (Median) and 90th 
percentiles.  A 95% CrI is included for each of the model parameters, along with the DIC for each model.  

In terms of overall fit, the gamma model shows the smallest DIC, followed closely by the Weibull model. 
The log–normal model shows the next best overall fit, and the exponential model shows the worst overall fit. 

The PPCs reveal that the exponential model will over–predict the minimum and maximum, with probabilities 
0.6 and 0.88 respectively, while it over–predicts the 10th, 50th and 90th percentiles with respective 
probabilities: 0.31, 0.54 and 0.64. The gamma model over–predicts the minimum and maximum with 
respective probabilities: 0.77 and 0.87. It over–predicts the 10th, 50th and 90th percentiles with probabilities: 
0.59, 0.55 and 0.55 respectively. The log–normal model shows a tendency to predict the minimum and 
maximum greater than the observed minimum and maximum with probabilities: 0.8 and 0.98 respectively. It 
predicts higher than the observed values for the 10th, 50th and 90th percentiles with respective probabilities: 
0.56, 0.52 and 0.71. The Weibull model over–predicts the minimum, 10th, 50th and 90th percentiles, and the 
maximum with probabilities: 0.75, 0.51, 0.57, 0.52 and 0.85 respectively.  

In the lower tail the log-normal 
model fits best (predicting 31 
flight-hours (fhr) where the 
observed data is 35 fhr. In the 
region of highest density, the 
data median time between 
failures is 107 fhr, and this is 
followed most closely by the 
gamma model (also 107 fhr) and 
then the Weibull model (109 
fhr). In the upper percentiles, we 
observe a data 90th percentile of 
290 fhr, which is modeled best 
by the log–normal (293 fhr) and 
followed by the exponential 
model (300 fhr). 

 

 

4. DISCUSSION 

This paper asserts the need for specificity in model selection and comparison techniques so that models are 
chosen according to their suitability to the particular inferential task at hand. We build a case for such an 
assertion on the basis of a real example from the field of systems reliability.  

We fit four models: exponential, gamma, log–normal and Weibull, to data representing inter–arrival times of 
failure events. The exponential model is a single parameter model while the other three models are 2 
parameter models. Modeling is undertaken in a Bayesian setting where diffuse priors are employed so as to 
maximize the impact of the data models on the inferences produced. We demonstrate a combined approach to 
model selection which incorporates the use of the usual kind of penalized information measure (here we use 
DIC) as well as a suite of posterior predictive checks spanning the expected support of the data distribution.  

Table 1. Bayesian model summaries: posterior modes of distributions 
of posterior predictive 10th, 50th and 90th percentiles; 95% CrI 
estimates for model parameters; model DICs. 

Model PPC Percentile 
Modes 

95% CrI DIC 

10% 50% 90%
M1 14 89 300 (0.0061, 0.0097)λ ∈  870.4 

M2 29 107 271 (1.31, 2.36)

(0.0096, 0.019)

α

λ

∈

∈
 

861.0 

M3 31 95 293 (4.35, 4.75)

(0.9371,1.801)

μ

τ

∈

∈
 

865.4 

M4 27 109 266 (1.13,1.61)

(0.0003, 0.004)

α

λ

∈

′ ∈
 

861.8 

Data 35 107 290   
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We find that if the DIC had been our sole model selection criterion, the gamma model would be the chosen 
‘best’ model. This is followed by the Weibull model, then the log–normal. The exponential model performs 
most poorly overall, but this is expected as it has only one parameter and therefore lacks a degree of 
parametric flexibility to fit data in relation to the two-parameter models.  It should be noted that the 
conclusions listed here depend critically on the particular application and data used, although it is expected 
that they might also have wider implications. 

When the aim of inference is concentrated on a particular region of the data support, we find that lower 
percentiles are best modeled by the log–normal distribution, followed by the gamma distribution. These same 
regions are described relatively poorly by the exponential and Weibull models. High–density (low to mid-
percentile) regions are best modeled by the gamma distribution, although the Weibull model may also suffice 
in these regions. The log–normal model best describes the upper-percentile regions, followed by the 
exponential model. These percentiles are actually very poorly described by the gamma and Weibull models 
in comparison to the log-normal and exponential. This demonstrates the value in tailoring model selection to 
the inferential task at hand: we are better off choosing different models to describe distinct regions of interest.  

Figure 1. Kernel density estimates of the observed data (dashed lines) and Posterior Predictive densities (solid lines) for the exponential, 
gamma, log-normal and Weibull models fitted to aircraft air-conditioner data. Plots of PPC densities are included for each model, for the 
predicted minimum, 10th percentile, median, 90th percentile and maximum values; vertical lines represent the corresponding values from 
the observed data.   
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GAMMA MODEL
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The Bayesian approach to modeling via MCMC methods has been demonstrated to be a coherent, easily 
employed and easily manipulated framework for model fitting and model selection. The benefits of this 
approach are many and varied. They include its ease of implementation and the coherent interpretation of 
results as probability distributions and the ability to include prior information from other sources when it is 
available. While other methods of analysis make use of ‘plug–in’ estimates of parameters to assess tail fit, in 
practice full information is not available for the model parameters and hence the need for a model in the first 
place. Our approach incorporates full uncertainty about the true value of the parameters by producing 
probabilistic inferences given observed data. This is a far more open, straightforward approach to model 
performance assessment. 
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