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Abstract.  In practical operations aircraft may be considered to be either in turning or in straight flight. 
Application of the Frenet-Serret theorem to the aircraft trajectories (flight-paths) also demonstrates this 
characteristic. The Closest Point of Approach (CPA) between two trajectories is the point at which the 
relative displacement (range) between the two aircraft is at a minimum. There has been long standing use of 
this measure for resolving situations of close proximity both for aircraft and for ships (Britt, Schrader, 1970). 
Also well identified in international literature is the use of this measure as the basis of several guidance laws 
(Gazit, Powell, 1996; Zeghal, 1998). The determination of the location of the CPA therefore emerges as an 
important design calculation for the implementation of many proximity management functions (Fulton, 2002; 
Krozel and Peters, 1997; Merz, 1973a; Merz, 1973b; Miele et al, 1999; Tarnopolskaya and Fulton, 2009). 

This paper is a sequel to Fulton and Huynh (2009) that also contributes towards the development of a 
generalised CPA concept. There, the determination of the CPA for two aircraft each with linear motion was 
presented and the solution methodology was discussed. In this paper the situation is presented where own-
aircraft has a circular motion and an intruder aircraft has a linear motion. The generalised geometrical 
technique developed in Huynh and Fulton (2007) is extended and applied to encounters comprised of 3D 
trajectories. Further geometrical characterizations of Fermat's method for stationary points in vector form that 
are specific to this problem are provided. Again the formulation leads to the identification of a fixed 
reference point for the stationary states. This point, determined by three conditions, is located on a straight 
line that:  

1. lies within the plane of the first aircraft turn circle,  

2. passes through the centre of that turning circle, and  

3. is orthogonal to the flight path of the second aircraft.  

This reference point can then be used to determine the location of the CPA. The analysis provides a very 
effective method for determining the CPA that can be easily applied in an operational context. For example, 
the situation modelled can occur during normal operations where one aircraft is on a straight-in approach to a 
runway and another aircraft is turning onto final approach for a second parallel runway.  In this case the 
model that projects a linear extrapolation of each aircraft's velocity vector will not identify where in the turn 
the true CPA will occur. The present methodology can determine the actual CPA and this methodology can 
then be incorporated into an aircraft's flight management system to warn pilots as to where in the varying 
approaches vigilance needs to be the greatest.  

As a consequence of this work more accurate and more concise specifications of aircraft proximity 
management functions can be achieved. These specifications are then useful when developing robust and 
dependable algorithms for aircraft avionics. The methodology is also considered to be useful in other forms 
of vehicle navigation such as robotics. 

Keywords: Collision avoidance, cooperative manoeuvres, fixed reference point, optimisation, turn rates, 
proximate. 
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1. FORMULATION AS AN OPTIMISATION PROBLEM 

The problem of two aircraft moving, one with a circular uniform motion and one with a straight uniform 
motion, can be posed in the earth reference frame as follows: 

Assume that aircraft A  is turning around a circle A   with centre AO  and radius a .  Aircraft B  moves on 

a straight line with the flight path Δ .  The XY-plane is generally defined as the plane of the turning circle of 

aircraft A .  Let  line 'Δ  be the image of  the line Δ  by the normal projection of Δ  onto the XY-plane.  Let 

d  be the minimal distance between the turn centre AO  and the line 'Δ . The coordinate system’s origin is set 

at the turn centre AO .  The X-axis ( )AO X  is determined by a straight line in the XY-plane which is drawn 

from the turn centre AO  and orthogonal to the line Δ . Thus, the X-axis is perpendicular to 'Δ  and intersects 

with 'Δ at point BO . Consequently, the Y-axis ( )AO Y  is determined by the perpendicular line to the X-axis 

at the turn centre AO .  Clearly, the Y-axis is parallel to 'Δ .  Finally, the Z-axis ( )AOZ  is perpendicular to the 

XY-plane and determined by the Right-Hand rule, as shown in Figure 1. 

 
Figure 1: Cartesian Coordinates System 

By the well-known mathematical convention, the left turn (anti-clockwise) is in the positive direction for 

angles.  Let ζ  be the turning angle of aircraft A , measured anti-clockwise from the X-axis ( )AO X .  

Assume that aircraft A  is uniformly turning with a constant angular velocity Aω , thus 0Atζ ω ζ= +  where 

0ζ  is a constant .  Let ( ), ,A A A AP x y z=  be an arbitrary location of aircraft A  on its turn circle.   

Clearly, ( )cos , sin ,0AP a aζ ζ= . 

Now, let  'J ∈ Δ ∩ Δ   and  I  be the point on Δ  such that BO  is the foot of I  on the XY-plane by the Z-

projection ( I ∈ Δ  with 0z  is the Z-coordinate of I ).  Clearly,  ( ),0,0BO d= ,  ( )0,0,I d z=  and 

( )0

                    for  
  

, tan , 0 otherwise
B AO C

J
d z γ

Δ ⊥⎧
= ⎨

⎩
      

(where  is the angle of the line  and the XY-plane)γ Δ
 

If BP ∈ Δ  then ( ), ,B B B BP x y z=   where Bx d= , cosBy δ γ= , 0sinBz zδ γ= +  and 0BV tδ δ= +  

where  BV  and 0δ  are constants for the straight and uniform motion.   

Furthermore, as indicated in Figure 1, we have: ( )0,0,0AO = ,  ( ),0,0BO d=    and   ( )' , , 0B BP d y= .   
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Let A Bd O O=   with d d= ,  0 Bz O I=   with 0 0z z= ,   BIPδ =  with δ δ= , A Aa O P=  with 

a a=   and A BR P P=  with ( ) ( ) ( )2 2 2
B A B A B AR R x x y y z z= = − + − + − . 

Suppose we are given the vectors: a , d , δ  and 0z .  Then, the relative range ( R ) can be presented by: 

                0R a d z δ= − + + +            

Thus,     2 2 2 2 2
0 02 cos 2 cos sin 2 sinR a d z ad a zδ ζ δ γ ζ δ γ= + + + − − +  

                        where  0

0

A

B

t
V t

ζ ω ζ
δ δ

= +⎧
⎨ = +⎩

 

Here, if the initial values ( )0 0,ζ δ  are given, then the miss-distance of two aircraft (one with a circular 

motion and one with a straight motion) is defined as the minimum value of R . In this case, a minimisation 
for R  is equivalent to a minimisation for 2R  (for 0R ≥ ). Thus, the miss-distance of aircraft can be 
determined if we can find values of ζ and δ  so as to minimise 2R .  Clearly, this is a classical nonlinear and 

unconstrained optimisation problem.  In particular, the total differential (Caunt, 1946) of the function 2R  is 
used to find the geometrical relation of stationary points and to understand the nature of the problem. 

 

2. DETERMINATION OF AIRCRAFT LOCATIONS FOR MISS-DISTANCES 

In this section, the geometrical relationship between the aircraft at the CPA is derived and discussed. Some 
basic cases of the possible proximity termination conditions are presented. 

2.1. Fermat’s equation and the fixed reference point for stationary states 

From the previous section, the squared distance between two aircraft is a function of two variables ζ and δ .  

Hence, the total differential of 2R , with respect to ζ and δ ,  is given by: 

                   
2 2

2 R RdR d dζ δ
ζ δ

∂ ∂
= +

∂ ∂
                 with   0

0

A

B

t
V t

ζ ω ζ
δ δ

= +⎧
⎨ = +⎩

                                                                                   

                               where    
2

2 sin 2 cos cosR ad aζ δ γ ζ
ζ

∂
= −

∂
 

                                             
2

02 2 cos sin 2 sinR a zδ γ ζ γ
δ

∂
= − +

∂
    

Thus, the total derivative (Matlak, 1961) of  2R   can be described as: 

                   
2 2 2dR R d R d

dt dt dt
ζ δ

ζ δ
∂ ∂

= +
∂ ∂

      ⇒      
2 2 2

A B
dR R R V
dt

ω
ζ δ

∂ ∂
= +

∂ ∂
 

Fermat’s method for stationary points (Sanford, 1930; Ball, 1960; Paolini, 2003) states that stationary points 
of 2R can be found as the roots of the following equation:  

            
2

0dR
dt

=        ⇒         
2 2

0A B
R R Vω
ζ δ

∂ ∂
+ =

∂ ∂
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This is Fermat’s equation for stationary points for the problem at hand (and in short, in this paper, Fermat’s 
equation).  In terms of ζ and δ variables, the above equation can be written as: 

       ( ) ( )0sin cos cos cos sin sin 0A Bad a V a zω ζ δ γ ζ δ γ ζ γ− + − + =             

Now,  let A

B

W
V
ω

= ,  Fermat’s equation becomes: 

                ( ) 0sin cos cos cos sin sin 0W ad a a zζ δ γ ζ δ γ ζ γ− + − + =   

⇒           ( ) 0cos sin 0
cos

B
A A B A

yW y d x y y zγ γ
γ

− + − + =  

⇒           0 sincos
cos

B
A A B

zyy d x y
W W W

γγ
γ

⎛ ⎞− + − = −⎜ ⎟
⎝ ⎠

 

Thus, Fermat’s equation can be cast in the form: 

                       0

2

   1

sin1 0    1 cos
sin     1cos

A A

B

x y

z
W W

d yW

γ
γ
γ
γ

= −

+

                                                                                                           

This is the determinantal form of Fermat’s equation for the general case of this problem. 

Let     
2sin

cosk W
γ
γ= , 0 sinzH W

γ
= − , 1 ,0,0cosF W γ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, ( ), ,0L BP d k y= +  and 

         ( ){ }, , :  ,  y , 0L x y z x d k z= = + ∈ =  

Therefore, the vector form of Fermat’s equation is given by:   ˆA LFP FP Hz× =        where  ẑ  is the unit 

vector of Z-axis. Note that the point F is a fixed reference point for stationary states. 

Finally, this result gives rise to some exceptional cases because, in this form, Fermat’s vector equation is 
undefined for the cases where: cos 0γ =  and 0W =  (that is, 0Aω = ). These cases can be considered 
separately by recasting the equation and by then applying a similar approach. 

2.2. Geometrical solution for the general case 

Consider two possible situations: 

(i) AP  is given, and 

(ii) BP  is given. 

2.2.1. AP  is given 

If AP  is given then AFP  is determined.  Define the line 'L as a parallel line to AFP  and separated from 

AFP  by a distance 
A

H
h

FP
= .  There are two possible cases for the line 'L  produced by this definition.  

414



Huynh and Fulton, Proximity termination conditions for two aircraft: one with circular and one with straight 
uniform motion 

However, only one 'L  may be selected to satisfy the vector equation: ˆA LFP FP Hz× = ,  where 
'

LP L L∈ ∩  and  ẑ  is the unit vector of Z-axis.  Hence, the point '
BP  is also determined, with ' '

BP ∈ Δ  and 

the Y-coordinate of '
BP  is equal to the Y-coordinate of LP . 

Finally, because of  '
BP   is the Z-projection of BP  on the XY-plane,  therefore BP  is the minimal solution  of 

R .  The geometrical interpretation is shown in Figure 2. 

   
Figure 2: Geometrical solution for the general case when AP  is given 

2.2.2. BP  is given 

If BP  is given then '
BP  is known. Thus, the point LP  is also determined.  Now, let 

L

H
h

FP
= .  Next, draw a 

circle L  with centre LP  and radius h .  Then, from point F draw two tangents to the circle L .  And 

then, select the tangent T such that: ˆA LFP FP Hz× = ,  where A AP T∈ ∩  and  ẑ  is the unit vector of 

Z-axis.  Finally, AP  is determined to minimise the relative distance R  if AT ∩ ≠ ∅ .   

The geometrical solution is presented in Figure 3. 

 

Figure 3: Geometrical solution for the general case when BP  is given 
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2.3. Geometrical solution for the planar case ( sin 0γ = ) 

 This is a simple case commonly found in the aircraft or ships motion.   If  sin 0γ =  then the flight path Δ  

is parallel to the plane of the turn circle A . Clearly, the Z-coordinate of point BP ∈ Δ  is constant 

( 0Bz z= ); therefore the solution for this 3D optimisation problem is equivalent to its planar case (in 2D) 
produced by Z-projection. Thus, the determinantal form of Fermat’s equation is reduced to: 

                            

   1

1 0    1 0

    1

A A

B

x y

W

d y

=                                                                                                                              

Let   1 ,0,0F W
⎛ ⎞= ⎜ ⎟
⎝ ⎠

   and  ( ) ', , 0L B B BP d y P P= = =        ( LP ,  BP   and '
BP  are unique). 

Then Fermat’s vector equation is presented by:  0A BFP FP× =     

Clearly, three points: AP , F  and BP  are collinear.  The fixed reference point F  (for stationary states) is 

independent to the locations of aircraft: AP  and BP .  Thus, if one of AP  or BP  is given and then the one that 

remains can be determined so as to minimise the relative distance R .   

Note that if point F  lies outside the aircraft A ’s turn circle A  then the sufficient condition to construct 

point AP  (the minimal solution for R ) is: the given point BP ∈ Δ  must be bounded by two tangent lines 

which are drawn from the fixed reference point F  to the circle A . 

Finally, the geometrical solution is shown in Figure 4. 

 
Figure 4: Geometrical solution for the planar case ( sin 0γ = ) 

 

3. DISCUSSION 

In this paper, a geometrical method to find the CPA between two aircraft where one is moving with a circular 
uniform motion and one with a straight uniform motion is discussed and demonstrated.  Solutions for the 
general case and the planar case are presented in detail. The exceptional cases have been identified. The 
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geometrical solutions for these can be directly derived from Fermat’s equation as shown in the following 
determinantal forms (by inspection): 

(i) the case of cos 0γ = ( orthogonal flight paths):    

0 1

0 1 0
1

1

Ay
d

Wd
d δ

=
+

,   and 

(ii) the case of 0Aω = :        0
2

0  1
 0 1 sin cos

sin   1

A

B

y
d z
d y

γ γ
γ

= −  

Finally, the approach demonstrated has also been used to find the CPA for the case of where both aircraft are 
turning in a generally oriented 3D circle. 
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