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Abstract:  This paper studies close proximity aircraft encounters that can occur in the missed-approach, in
the circuit area, and for operations outside controlled airspace where air traffic management services may be
unavailable and where aircraft may routinely fly in close proximity. The paper presents a synthesis of optimal
control for cooperative collision avoidance strategies in a close proximity coplanar encounter and studies its
behavior with change in system parameters. The aim of the paper is to derive a benchmark solution against
which practical cases can be assessed.

The problem is formulated as a Mayer problem with free terminal point for a continuous control system. The
control functions are the non-dimensional turn rates of the aircraft which are scaled so that they are bounded
by *1, with positive values corresponding to the right turns and negative values corresponding to the left
turns. The objective is to maximize the terminal miss distance on the trajectories with decreasing relative
distance between the aircraft. The domain of the non-dimensional control system consists of two parts: (1)
the non-dimensional state-vector p” =(r,¢,8) that specifies the instantaneous relative positions and relative

direction of motion of two aircraft, and (2) the non-dimensional parameters of the problem 7y and @, which
represent the ratios of the linear speeds and of the maximum turn rates respectively.

To date, analytic solutions were available only for the case of identical aircraft ¥ = w =1 (the problem was
first studied by Merz, and a rigorous analysis has been presented in the authors’ recently published paper).

The focus of this paper is on a more general case @w#1, =1 (the aircraft with unequal turn capabilities).

The analysis is based on the Pontryagin Maximum Principle for a Mayer problem. The analytic solutions for
the extremals are presented and the synthesis of optimal control is constructed based on the properties of the
extremals. The analytic solutions make it possible to present the optimal control solution in a parametric form
and study its behavior over a wide range of the parameter values. The analysis shows that the structure of the
optimal control solution is significantly more complex in this more general case than in the case of identical
aircraft. Thus, Merz’ solution for identical aircraft represents a degenerate case of this more general solution.

The partitioning of the plane of initial conditions into the regions of initial conditions for different optimal
strategies is determined and its change with the change in the non-dimensional parameter @ is established.

The closed form optimal control solutions and the analysis of their behavior with change in the non-
dimensional parameter ® developed in this paper are useful for benchmarking and validating the performance

of automated proximity management collision avoidance systems.

Keywords: Optimal control, Pontryagin Maximum Principle, Mayer problem, close proximity, cooperative
maneuvers, collision avoidance, analytic solutions
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1. INTRODUCTION

The growth in demand for air travel, and the introduction of aerial vehicle operations (without a human pilot)
and personalised jets will result in increase in the frequency of aircraft proximity incidents. Some examples
of operations where close proximity situations may occur include the missed approach, the circuit area, and
operations outside controlled (managed) airspace where air traffic management (ATM) services may be
unavailable and where aircraft routinely fly in closer proximity. Such situations require dependable proximity
management at physical limits well below the more commonly understood ATM separation standards used in
the present managed (controlled) airspace or those presently proposed for Free Flight airspace. As a result,
there is a need to re-examine the physical and mathematical basis for existing proximity models and the
present rules of the air.

While an advance in numerical optimization techniques makes it possible to study complex scenarios
involving many participants (see Tarnopolskaya & Fulton, 2009a, for a comprehensive list of references), the
analytic solutions for simplified scenarios are important as they have a potential to reveal the underlying
structure of the solution and its behavior over a wide range of the parameter values.

This paper studies the cooperative coplanar close proximity encounter of two aircraft with equal linear speeds
but unequal turn capabilities. The underlying assumption is that the linear speeds of the participants are
constant (which is a reasonable assumption given a short time of the conflict).

The non-dimensional equations of motion in the moving polar coordinate system connected with the faster
aircraft are (Merz, 1973a and 1973b; Tarnopolskaya and Fulton, 2009a)

F=—cosg+cos(0—¢@), p=—0 +[sing+sin(@—¢)|/r, 6=—0 +w0o,, 1)

where r, @, @ specify the non-dimensional instantaneous relative distance between the aircraft and the
instantaneous angles defining the relative direction of motion of two aircraft (see Figure 1); o, o, are the
non-dimensional angular speeds of the aircraft scaled so that they are contained in the interval [-1, 1], with
positive values corresponding to the right turns (from the point of view of the pilot), and negative values
corresponding to the left turns; @ = |a)| /|‘01.mx| >0, where @, ,o,,  arethe physical bounds of the angular

,max

speeds of the aircraft. The derivatives with respect to the non-
dimensional time t are denoted with dots.

The system of ordinary differential equations (1) can be viewed
as a control system with the state vector p’ =(r,¢,6)and

control function u” =(0,,0,),u:[0,T]1->U; U c IR®,

U =[-L1] X{—L1]. The maximisation of terminal miss distance

(the smallest distance between the participants during the
maneuver) is adopted in this study as a performance criterion.

v X

The important sub-class of the problem for @ =1 (identical
aircraft) was first studied by Merz (Merz, 1973), and a rigorous
analysis presented in Tarnopolskaya & Fulton, 2009a. This
paper considers the case of aircraft with different turn
capabilities (that is, @ >0). The analytic solutions developed
by the authors are presented (a detailed analysis is given
elsewhere (Tarnopolskaya & Fulton, 2009b)). They are used to study the structure and the behavior of the
optimal control solution for a wide range of the parameter values @ .

Figure 1: Schematics of the conflict
in the moving reference frame

1. OPTIMISATION PROBLEM

The non-dimensional maneuver time 7 (also known as the terminal time) is defined as the time of closest
approach between the two aircraft. It is defined by the conditions

r(T)=0, 7r(t)<0, te[0,T]. 2)
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The control system is

p=f (p,u)=[-cosg+cos(@—¢), —o +[sing+sin(@-9)]/r, -0, +wo,],p

t:():po’ (3)

and the objective is to maximize the terminal miss distance y(p,u)= rLT =r, over all admissible controls.

Therefore, the performance index is a function of the terminal time only. As the terminal time T is
unknown, the problem can be considered as a Mayer problem with free terminal point.

We also define, for the sake of definiteness, the domains for the state variables within the range

0<6<2rm, —-r<¢<m. @)

It is easy to see that the first of Eqgs.(2) together with Egs.(3) yield two possible terminal conditions:
1. 6.=0; (5)
2. ¢,=6./2-x, ¢ =612 (6)

2. NECESSARY CONDITIONS FOR OPTIMALITY

The Hamiltonian function in the polar coordinate system is given by:
H((b).p(8)u() =1 o £, (p.w) = 4 (OF(t,w) + 4, (D(tw) + 4,(D6(t.w)

= A [~cos@+cos(6 — @)+ A {—0, +[sin g +sin(0 - §)]/r} + 4,(-0, + wo,), @
where the adjoint variables A" (t) = (4 (t),4,(¢),4,(t)) satisfy the equations

A [sin @ +sin(6 - )]/ r’
A =-VH=|- A (sin @ +sin(6 — @)) — A [cos @ —cos(6 — @)]/r 8)
A sin(@— @)+ 4, cos(6—-9)/r

with boundary conditions MT) =V w(p(T),u)=[1,0,0]".

Using the Pontryagin Maximum Principle (Pontryagin et al., 1965), it can be shown (Tarnopolskaya &
Fulton, 2009b) that the terminal conditions (5) and (6) yield two types of possible optimal strategies: 1)
terminal condition (5) corresponds to ¢, =—0, =1 (the aircraft are turning with maximum angular speed

in opposite directions). We will call these strategies right-left (RL) and left-right (LR) strategies; 2) terminal
condition (6) results in o, =0, =*1 (both aircraft are turning with the maximum angular speed in the same

directional sense). Such strategies will be called right-right (RR) and left-left (LL) strategies.

Using the transformation of variables r =/x* +y* , rsing =x, rcos¢ =y, Eq. (1) can be re-written in the

Cartesian coordinates and presented in terms of backward (retrograde) derivatives as
X=0,y—sinb, y=1-0,x—-cos¥, 0=0 —-wo,. ®

Solving Eqgs.(9) subject to the boundary conditions xL0 =X y|,:(. =y,, and one of the two terminal

T

conditions (5), (6) yields the following cases:

Casel. 6, =0, o, =—0, ==1. This case corresponds to the RL and LR strategies.

The solution of Egs. (9) is given by
_ o(l+w)yr for o =1,
ez o(l+wr for o =-1,
x=r,sin(@, + 0.7)+ 0 [1+cos[(1+ w)r]/ w— (1+ w)cos T/ W], (10)
y=r,cos(¢, +o0,7)+(1+ w)sint/w—sin[(1+ w)7]/ o,
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where subscript “T” refers to the terminal instant, 7 is the backward time, z=T —t. For =T, Egs. (10)
describe the loci of the initial conditions (x, = x

Y, = yL:o) and take the form

{x, —1-cos 8,/ w+ 1+ w)cos[b, /(1+ w)]/ W}’
For 0, =1: ) ] (11)
+{y, —(1+ w)sin[6, /(1+ w)]/ @ +sin 6, / @}’ =r;

{x, +1+cos8, / w—(1+ w)cos[(6, — 27) (1 + )]/ @}
For 0, =—1: . . (12)
+{y, + A+ ®)sin[(6, —27) /(1 + w)]/ @ —sin b, / @}’ =1}

Casell. 6, =2¢,+2x or 6,=2¢,; 0,=0,==1.This case corresponds to the RR and LL strategies.

The solution of Egs. (9) takes the form

O=o0,(l-w)7+6,, y=r,cos(¢, +0,7)+sint—o0,{sin(0, +0,7)—sin[0, +o,(1-w)7]}/ o,

13
x=r,sin(¢, +0,7)+0, cos(d, +0,7)/ w+0,(1-cos7)—0, cos[l, +o,(1-w)7]/ w. (13)
Fort=T we have 6, =0,(1-w)T +6,, and the two branches of the initial conditions for the state variables
(x,y) are given by:
[x,—o(1-cos8 /®)] +(y,—0 sinb,/w)

Forg, =6,/2: . (14)
=1, +2-2cos[6,—o.(1-o)T])/ w-2r,0(1+1/ w)sin[(6, — o, (1-w)T)/2],

[x,—o(1-cosb,/w)] +(y, — 0, sin b,/ w)
Forg. =6, /2—r: i . (15)
=1, +2-2cos[d, —o (1-o)T]/ w+2r,0c(1+1/w)sin[(6, —o (1-w)T)/2].

3. SYNTHESIS OF OPTIMAL CONTROL

In order to select the optimal trajectories from the set of extremals, one should: (a) select the trajectories such
that the distance between the aircraft decreases on te [0,T]; (b) amongst such trajectories, select those that

maximize the performance criterion (the terminal miss distance). Firstly, consider the trajectories along
which the distance between the aircraft decreases, that is
r=2sin(6/2)sin(p—60/2)<0;, te[0,T). (16)

Inequality (16) yields, for the state variable & within the range defined by Eq. (4):
0/2-r<p<8/2, te[0,T].For t=0, the latter inequality reduces to

0,/2-7<¢,<6,/2. (17)

It follows from Eq. (17) that the straight line tan ¢ = tan(6, /2) divides the plane of the initial condition into
the two sub-regions of the initial conditions for the trajectories with positive and negative instantaneous time
derivative of the distance between the aircraft at the beginning of the maneuver.

Firstly, we present, without proof, several results that follow from the analysis of the properties of the
extremals (for proofs, see Tarnopolskaya & Fulton, 2009b):

Proposition 1 For 0< 6, <, possible optimal strategies include right-right(RR), left-left (LL) and right-left
(RL) strategies. For 7 <6, <2z, possible optimal strategiesinclude right-right(RR), left-left (LL) and left-
right (LR) strategies.

Proposition 2 Of all the loci of the initial conditions for RR and LL strategies described by Egs. (14) and
(15), only those described by Eq. (14) with o, =-1 and Eq. (15) with o, =1, correspond to the trajectories
with decreasing relative distance between the aircraft (that is, when condition (16) is satisfied). The direction
of motion of the corresponding trajectoriesis clockwise towards ¢, =8, /2 for strategy associated with loci

Eq. (14) o, =-1 and is anticlockwise towards ¢, =8, /2 — 7z for strategy associated with loci Eq. (15) with
o =1.
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Using the above results, we can now construct, for a giveng,, the loci of initial conditions for x,y with
associated strategies that deliver a given terminal miss-distance 7, and ensure a decreasing relative distance
t=0 = 00} :
We also define the internal envelope R(r;,6,) of the loci with associated strategies R(r,,6,) as:

between the aircraft during the maneuver. We denote the loci by R(r,,6,) = {x,,y,,u: r|t=T =r,,0

R(T,.60) ={(x,.y,,w):(x,,y,,u) € R(r,,6); for any valueg, 7,(x,,y,)= min 7(x,y,)}. Consider

(x0.yo R (7 60) ¢
the loci of initial conditions for the trajectories with decreasing relative distance defined above. Denote the
point of intersection of the RR loci (15) and the LL loci (14) in polar coordinates by

r”(r,,0,)=0"(,,6,),0 (r,,6,)) . Also denote the point of intersection of the RR loci (15) and RL (LR)
loci (Eq. (11) or (12)) by r"(r,,6,) = (r"(r,,6,),¢"(r,,6,)) . The point of intersection of the LL loci (14)
and the RL (LR) loci (Eq. (11) or (12)) is denoted by r*(r,,6,) = (r*(r,,6,),0"”(r,,6,)) . We define the
internal envelope R(r;,6,) as follows:

if r”<r"”, arcof RR loci Eq.(15) for 6, /2-w<¢<¢?,
arcof LLloci Eq.(14) for ¢" <¢<8,/2,

R(r,,0,)=1 if r” >r®, arcof RR loci Eq.(15) for 6 /2-7m<¢<g”, (18)
arc of RL loci Eq.(11) for ¢" <¢<¢”,0<6, <,

arc of LR loci Eq.(12) for ¢“ <¢<¢”, w<06 <2r,

arc of LL loci Eq.(14) for ¢” <¢<8 /2.

The following results can be proved (Tarnopolskaya & Fulton, 2009b).

Lemma 1: For each point (x,,y,) on the loci of initial conditions with associated strategiesR(r,,6,) that
lies outside the internal envelope R(r,,0)), there exists a strategy that delivers a terminal miss distance
larger than r, .

Corollary: The strategies associated with the initial conditions described by the internal envelope
R(r,,0)) arethe optimal strategies for given initial conditions x,,y,,6, .

For a given r, and 6, , the point on the plane of the initial conditions (x,y) that serves as the initial condition

for two different optimal strategies that result in the same terminal miss distance is called a dispersal point. A
loci of the dispersal points for a given 8, is called a dispersal curve. The dispersal curves partition the plane

of the initial conditions into the sub-regions of the initial conditions for different optimal strategies. For a
given @,, a triple point is a point on the plane of the initial conditions that corresponds to three different
optimal strategies that result in the same terminal miss distance. Thus, the curve r”(r,,6,) represents the
RR-LL dispersal curve, while r*(r,,6,) and r"”(r,,6,) are RR-RL and LL-RL dispersal curves respectively.
The triple point is the point of simultaneous intersection of all three dispersal curves.

4. PARAMETRIC BEHAVIOR OF THE OPTIMAL CONTROL SOLUTION

We can now study the behavior of the solution with change in the non-dimensional parameter @ . Firstly,
consider the behavior of the loci of the initial conditions for RR and LL strategies with change in @ . Main
results can be summarized as follows:

Proposition 3 For RR and LL strategies, the loci of theinitial conditionsfor x,y , for agiven 6, and r, and

varying time of encounter T, represent spirals. For w=1 (MerZ solution for identical aircraft, Refs. 1-3),
the spirals turn into circles with centers lying on the line passing through the origin and forming the angle
6, /2 with the vertical axis (counting clockwise from positive direction of y-axis). For @ > 1, the spirals are
bounded and contained between two concentric circles. As @ — <, the coordinates of the centers of spirals
approach the point (o,,0), while the radii of the concentric circles bounding the spirals approach the values

R,.,=1 +2-2r,; R, =1 +2+2r,.For w<1, both the centers and the radii of the RR and LL spirals

1

are unbounded and expanding as @ — 0.
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The behavior of the loci of the initial conditions is illustrated in Figure 2.
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Figure 2: Transformation of the loci of initial conditions for LL strategies with change in w,
0,=2m/3, r=3; Spirals corresponding to branches ¢, =6, /2 and ¢ =6,/2—x are shown with

solid and dashed curves respectively; a) w=1; b) ©®=2; ¢) v=10; d) ©=0.6; ) ®=0.4; ) ®=0.1.
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Figure 3: Dispersal curves for 6, = 5n/6; a) RR-LL dispersal curves shown up to the triple point
only; : =152 0=4;3: 0=2;4: o= 1;5: ®=0.5; 6: ® = 0.1; b) Dispersal curves and
partition of the plane of initial positions into the regions of different optimal strategies for

different values of parameter ®; o=1;  ©=05..... o = 0.1; c) Dispersal
curves and partition of the plane of initial positions into the regions of different optimal
strategies for different values of parameter ®; o=  o=2 . . . 0=4
......... w=15.
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We now consider the behavior of the dispersal curves and the triple point with change in @ . Figure 3a shows
the RR-LL dispersal curves for values of 7, between zero and the triple point, and different values of @ . One

can see that, with increase in ®, the radial position of the triple point decreases while the dispersal curves
rotate anticlockwise. Figures 3b and3c show the partitioning of the plane of the initial conditions for x,y into

the regions of different optimal strategies for6, =27 /3 and different values of parameter ®. One can see

that in all cases the plane of the initial conditions is partitioned into three sub-regions of different optimal
strategies. Rather interestingly, while RR-LL dispersal curves rotate clockwise with decrease in @, the RR-
RL and LL-RL dispersal curves remain nearly parallel to themselves during the transformation. Also, RL-LL
dispersal curves remain nearly parallel to y-axis, thus suggesting that a simple practical approximation for
these dispersal curves is possible.

DISCUSSION AND CONCLUSIONS

The paper studies the parametric behavior of the optimal control solution for collision avoidance of aircraft
with unequal turn capabilities in a close proximity encounter, based on the analytic solutions developed by
the authors. The non-dimensional parameter of the problem is the ratio of the maximum turn rates of the
aircraft ®. The analysis revealed that there are many common features of the optimal control solution for
different values of . They are:

e the optimal strategies consist of combinations of the maximum and minimum values of the control
functions and include right-right (RR), left-left (LL), right-left (RL) and left-right (LR) strategies;

e the partition of the plane of the initial conditions into sub-regions of the initial conditions for
different optimal strategies has common structure. Thus, there are 3 sub-regions of different optimal
strategies for a given 6,. For 0 <6, < 7, they are right-right (RR), left-left (LL) and right-left (RL)

strategies, while for 7 <6, <2z they are right-right (RR), left-left (LL) and left-right (LR)
strategies;

e A presence of the triple point (a point where all three optimal strategies result in the same miss-
distance) is a general feature of the solution for all values of the parameter.

Despite the common features of the optimal control solution, the structure of the optimal control solution in
general case is significantly more complex than in the previously studied case of identical aircraft
w=1,y=1 (Merz, 1973; Tarnopolskaya & Fulton, 2009a). Thus, the loci of the initial conditions and the

trajectories for the right-right (RR) and left-left (LL) strategies, which are spirals in a general case,
degenerate into circles for w=1. Also, while the regions of initial conditions for all optimal strategies
change with time along the optimal path for the general case @ #1, the loci of initial conditions for the
optimal RR and LL strategies remain stationary for @ =1. Thus, the well-known Merz’ solution for identical
aircraft represents a degenerate case of a more general solution. The geometry of the partitioning of the plane
of the initial conditions into regions of different optimal strategy changes with change in ®. The non-
dimensional radial coordinate of the triple point decreases with increasing . However, the dispersal curves
remain nearly parallel to themselves with change in ®.

This papers derives a benchmark (ideal solution) against which practical solutions can be assessed. The
results of this paper are useful for improving the understanding and control of the aircraft maneuvering in
close proximity. The solutions developed are also useful for maritime applications and robotics.
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