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Abstract: In the last decades, rapid improvement in processor speed has encouraged the development of 
large, distributed, process-based models, which are implemented in more and more complex computer codes. 
However, despite the increased computing power, the use of such models is far from being inexpensive: 
obtaining output trajectories over a time horizon of few years can require many days of simulation. As a 
consequence, the application for planning and management purposes is still very limited. What-if analysis, 
for example, i.e. the evaluation of the behavior of a system against a set of possible scenarios, can be applied 
to process-based models only when the number of scenarios is very small, as each model simulation can be 
prohibitively time consuming. Furthermore, the integration of process-based models into an optimization 
scheme is, at the state of the art, essentially impracticable.   

In recent years, emulation modeling emerged as a promising technique to overcome these limitations. An 
emulation model is a simple, usually lumped model, which is identified from synthetic data generated via 
simulation of a computationally inefficient model, and that can be used in its place to run fast simulations and 
optimization. Emulation modeling is largely employed in aerospace and mechanical engineering and is an 
emerging issue in environmental modeling, especially in the field of air quality. Applications to water 
systems mainly concern modeling and control of diffuse pollution in groundwater and soils. In this paper, the 
application of emulation modeling techniques is extended to hydrodynamics, namely modeling of stratified 
lakes. The ultimate scope is to allow for an indirect use of large, distributed, process-based hydrodynamic 
models for optimization purposes, closing the gap between scientific-oriented research and decision-making 
practice.  

The applicability of the emulation modeling approach is tested over a simplified but rather realistic case 
study: a one-dimensional, nonlinear, two-layer model of a rectangular basin. The model is simulated to 
generate synthetic time series of the thermocline displacement from the equilibrium position, as a function of 
the wind action, in different conditions of stratification (i.e. layers density). These data are used to develop a 
very simple emulation model. Precisely, an AutoRegressive-eXogenous (ARX) emulation model is 
identified, with different parameter settings estimated for each stratification condition. Although very simple, 
the emulation model provides an accurate estimate of the selected output variable. Moreover, its parameters 
can be provided with a physically meaningful interpretation. These promising results motivate further 
research to extend the application of emulation modeling to more sophisticated hydrodynamics models and to 
use this approach for planning and management of water resources. 

Keywords: Emulation modeling, two-layer model, lakes stratification, water resources planning and 
management 
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1. INTRODUCTION 

An emulation model (also known as surrogate model or meta-model) is a simplified and computationally 
efficient model identified using statistical identification techniques over synthetic data generated via 
simulation with a large, distributed, process-based model. The emulation model aims at reproducing only the 
dominant modes of the large original model that are significant for the purpose of the emulation modeling 
exercise. Kleijnen and Sargent (2000) discuss four possible goals: understanding of the process-based model, 
prediction of future outputs, validation, and optimization, which is the most common goal in emulation 
modeling. As for the structure of the emulation models, the literature shows a wide variety of model types, 
e.g. polynomials, splines, kriging or neural networks (for a complete review, see, for example, Simpson et al., 
2001) depending on the emulation model goal. Emulation modeling techniques are largely employed in 
aerospace and mechanical engineering and some applications to water systems have recently appeared (see, 
for example, Aly and Peralta, 1999; or Broad et al., 2005).  

In this paper, the applicability of emulation modeling in the field of hydrodynamics will be explored. The 
emulation modeling exercise will focus on a one-dimensional nonlinear two-layer model of a stratified lake, 
as an example of simplified but rather realistic process-based hydrodynamic model. To derive the emulation 
model, the following identification procedure (based on Kleijnen and Sargent, 2000) was adopted. 

• The process-based model is critically analyzed to construct the knowledge base of the physical system 
that will serve throughout all the subsequent emulation modeling exercise. 

• The input and output of the emulation model are chosen. The output is one of the variable that can be 
simulated by the process-based model and whose knowledge is needed for the simulation/optimization 
purpose. The input variables are selected among the inputs of the process-based model; the selection is 
based on physical considerations about the behavior of the system and on data analysis (e.g. correlation 
analysis). 

• Simulations of the process-based model are run to generate the I-O data necessary for the identification 
of the emulation model. This phase, known in the literature as Experimental Design (ED) (for a review 
of the most common ED techniques, see Kleijnen et al., 2005), is of crucial importance as the set of 
simulated data will directly affect the range of validity of the emulation model. 

• The type of emulation model to be identified is chosen. 
• The emulation model is calibrated and validated using the data-set generated in the ED. If results are 

satisfactory the procedure ends, otherwise it is necessary to return to the previous step and select a 
different type of emulation model. 

 
The paper is organized as follows. In section 2 the process-based (two-layer) model of the lake is described. 
The procedure for identifying the emulation model and its application are presented in section 3 while section 
4 provides a physically meaningful interpretation of the parameters of the emulation model. Section 5 draws 
the conclusions about the presented application.   

2. THE TWO-LAYER MODEL 

In a strongly stratified lake, the flow and mixing characteristics of the water column are mainly governed by 
the wind-induced response of the stratified layers. The idealized form of this situation is well described by a 
two-layer assumption consisting from lighter upper layer and denser bottom layer. In the present application 
we considered a rectangular basin (see Figure 1), with a section length of 10 Km. 

By introducing the two-layer assumption, the equations of the mass and momentum conservation are greatly 
simplified and the solutions are easily obtained by a simple numerical procedure compare to the full 3D 
hydrodynamic model such as POM (Mellor, 1996) and ELCOM (Hodges, et al., 2000). In this paper, we 
employ a one-dimensional nonlinear two-layer model, shown as below, 
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where subscripts 1 and 2 denote variables in the upper and lower layer, respectively, H is the layer thickness, 

q  is the volume transport, u  is the velocity, η  is the interface displacement from equilibrium position, *u  

is the friction velocity of the surface in the water phase, iτ  and bτ  are the shear stresses at the interface and 

bottom, respectively, ρ  is the density and 0ρ  is the reference density. The instantaneous layer thickness 

H  and the volume transport q  are defined for each layer as, 

 1 1 1 2H h η η= + −  (5) 

 2 2 2H h η= +  (6) 

 1 1 1q H u=  (7) 

 2 2 2q H u=         (8) 

The numerical scheme for solving the governing equations is similar to those developed by Oguz et al. 
(1990). The set of equations (1) to (4) were integrated explicitly using a predictor-corrector scheme. The 
horizontal advection terms were evaluated using the ULTIMATE-QUICKEST method (Leonard, 1991) to 
obtain stable and accurate solutions with relatively large time steps. To avoid the CFL (Courant-Friedrich-
Levy) limit due to the celerity of surface gravity waves, an implicit method was applied to the barotropic 
force term following Casulli and Cheng (1992). Therefore, the time step was limited only by the CFL 
condition due to the celerity of internal gravity waves. The numerical discretization used a staggered grid 
(Arakawa and Lamb, 1977) so that the thicknesses and velocities in the layer were determined at consecutive 
grid points. 

3. IDENTIFICATION OF THE EMULATION MODEL 

In the following we will 
show how to approximate 
the two-layer model with 
an emulation model. 

3.1. Output-Input 
selection 

In the present application 
the variable that we want 
to approximate is the 
maximum thermocline 

displacement 2η  from the 

equilibrium position that is 
observed  at the two 
extremes of the  basin 
section (with equal 
amplitude and opposite 
sign, see Figure 1).  

The candidate input of the 

emulation model is the velocity (modulus and direction) *u  of the wind, which is the physical phenomenon 

causing the thermocline displacement (and the only input to the two-layer model). However data analysis 
revealed that a better choice is the squared wind velocity,  namely  

                                                                       **
2
* uuu ⋅=                                                                        (9) 

This is also consistent with the physics of the system, since the shear stress sτ at the free surface induced by 

the wind action is proportional to the square of the wind speed. 

  

Figure 1. Graphical representation of the two-layer rectangular basin. The
meaning of the variables is explained within the text. 
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3.2. Experimental design 

To get the data for identifying the emulation model and testing its degree of accuracy, a set of simulation 
experiments of the two-layer model were designed. For each simulation it was necessary (i) to specify the 

parameters (the upper and bottom layer temperature 1T  and 2T  and the initial thickness 1h and 2h ) 

characterizing the stratification condition of the basin; and (ii) to define the trajectory of the wind velocity at 
the basin surface over the simulation horizon.  

In order to analyze the behavior of 
the emulation model for different 
stratification conditions, five 
different stratification scenarios 
were defined. The  two-layer 
model parameters characterizing 
these five scenarios are shown in 
Table 1, together with the 
fundamental period 1  T  of each 
configuration. Scenarios 
characterized by strong conditions 
of stratification (a large difference 
between the layers temperature) 
present a short fundamental period 
and a consequent strong resistance 
to the wind action, while scenarios 
with weak stratification are characterized by a larger fundamental period and a lower resistance. The 
trajectory of the wind speed employed for the ED is shown in the bottom panel of Figure 2. 

The simulation horizon is of 28 days and the result of the ED is a data-set of five vectors (one for each 
scenario) containing the simulated maximum thermocline displacement. An example of the ED results is 
given in Figure 2, 
where the 
trajectories of the 
wind action and of 
the corresponding 
thermocline 
displacement for 
scenarios 3 and 4 are 
reported (for the first 
14 days of 
simulation). Note 
that in case of 
stronger 
stratification (e.g. 
scenario 4) the 
thermocline 
displacement has  
lower amplitude and 
higher frequency. 
Moreover, note that 

                                                           

1 The fundamental period is defined as 
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2
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ρ

ρρ
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⋅ . The layers densities 1ρ  and 2ρ  are computed as functions of the layers 

temperature 1T and 2T . 

 

Figure 2. (a) Trajectories of the thermocline displacement for scenario 3 and 4
computed by the two-layer model for the first 14 days of simulation. (b) Trajectories
of the wind speed.

Table 1. Values of the two-layer model parameters characterizing 
the different stratification scenarios. 

 

- 
scenario 1 scenario 2 scenario 3 scenario 4 scenario 5 

h1  [m] 6.00 8.00 10.00 12.00 14.00 

h2  [m] 30.00 30.00 30.00 30.00 30.00 

T1  [°C] 20.00 22.00 25.00 27.00 30.00 

T2  [°C] 18.00 19.00 20.00 21.00 22.00 

T    [h] 38.50 27.05 18.47 15.35 12.19 
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both oscillation trajectories are characterized not only by a fundamental mode (corresponding to the 
fundamental period), but also by other modes of smaller amplitude and shorter period.  

3.3. Choice of the emulation model type 

To approximate the thermocline displacement computed by the two-layer model, the following Auto-
Regressive eXogenous (ARX) model was used 

                                                        +−− ⋅⋅
an

=i

bn

j=
jtjitit ub+ηa=η

1 1

2
1*,2,2,                                                    (10)    

where tη2,  is the thermocline displacement at time t, 2
*,tu  is the square of the wind speed at time t, ia  and 

jb  are the emulation model parameters to be determined, and an  and bn  represent the order of the ARX 

model. By introducing the backshift operator ( 1t2,t η=ηz −
− ⋅ 2,
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and finally in the Transfer Function (TF) form 
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. The analysis of the TF will provide a 

physically meaningful interpretation of the emulation model, thus maintaining a relation with the two-layer 
model, that would be precluded with other types of models (e.g. neural networks). We will return to this issue 
in Section 4.                      

3.4. Calibration and validation 

 The emulation model was calibrated 
based on synthetic data generated via 
simulation of the two-layer model 
(Section 3.2). The first 14 days of the 
data set was used for the parameters 
estimation while the latter 14 days for 
the model validation. Five emulation 
models of the form (10) were identified, 
one for each stratification scenario. For 

each model, the order [ ]ba n,n  was 

chosen by trial-and-error, while the 
parameters were estimated with the 
Refined Instrumental Variable method 
(Young, 1984). As shown in Table 2, 

the number an  of auto-regressive terms 

strongly influences the emulation model 
performances: if only one auto-
regressive term is used, the model 
cannot be identified or it has very low  

Table 3. Coefficient of determination 2
TR over the validation 

data-set for the model (10) of order [2,1]. 

na nb scenario 1 scenario 2 scenario 3 scenario 4 scenario 5 

2 1 0.983 0.928 0.951 0.987 0.987 

Table 2. Coefficient of determination 2
TR over the calibration 

data-set for different orders of model (10). 

na nb scenario 1 scenario 2 scenario 3 scenario 4 scenario 5 

2 3 0.927 0.989 0.949 0.994 0.981 

2 2 0.911 0.985 0.941 0.991 0.977 

2 1 0.914 0.985 0.941 0.991 0.977 

1 2 0.363 not 
identifiable 0.312 0.259 0.063 

1 1 0.359 0.215 0.127 not 
identifiable 0.113 
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coefficient of determination2 2
TR ,  while with two autoregressive terms performances are significantly 

improved. On the other hand, increasing the number bn of exogenous terms has no significant effect on the 

model performances. In the perspective of building the most simple (and effective) models and of analyzing 
the models parameters for each scenario, the order [2,1] was chosen for all the emulation models.  

Despite their simple structure, the emulation models maintain good performances also on the validation data-
set (see Table 3). The small differences in the coefficient of determination for different scenarios can be 
explained via graphical analysis of the trajectories simulated by the two-layer model and the emulation 
model. For 
instance, Figure 3  
compares the 
trajectories of the 
maximum 
displacement on 
the validation 
data-set for 
scenario 3 and 4. 
In scenario 3,  the 
fit of the 
emulation model 
is smaller (see for 
examples days 4-
6), which reflects 
into a smaller 

RT
2

 (Table 3). 
The reason is that 
the emulation 
models are 
second-order 
regressors and as 
such they can 
capture only the oscillations corresponding to the fundamental mode but not the higher frequency 
oscillations. In other word, the emulation models behave like low-pass filters, whose cut-off frequency 
corresponds to the inverse of the fundamental period. 

4. ANALYSIS OF THE EMULATION 
MODEL 

Before concluding, it is worthwhile to  analyze, 
from a system identification perspective, the 
structure of the five emulation models and its 
relation with the modeled system. The poles of 
TF models, i.e. the roots of the polynomial 

( )izA −  in (11b), which hold the information 

about the model stability, are reported in the 
second column of Table 4. First of all, note that 
the norm of all poles (column three) tend to one 
in all scenarios and thus all the emulation models 
are (marginally) stable. This is consistent with 
the two-layer model, which assumes that there is 

                                                           

2 The coefficient of determination is defined as 
( )

( )2

222

cov

cov
1

η
ηη −

−=TR  , where 2η  is the trajectory of the 

thermocline displacement simulated by the two-layer model, while 2η  is the trajectory simulated by the 

emulation model (10). 

Figure 3.  Comparison of the thermocline displacement simulated by the two-layer
model and the emulation model for scenario 3 and 4 (upper and lower panel
respectively). 

Table 4. Values of the poles and the corresponding 
norms of the TF denominator for the five scenarios. 
The last column shows the value of the exogenous 
parameter b1. 

scenario pole norm b1 [s
2/m] 

1 0.999977 ± 0.005221i 0.999991 5.26 · 10-6 

2 0.999937 ± 0.007476i 0.999965 5.06 · 10-6 

3 0.999908 ± 0.010953i 0.999968 4.85 · 10-6 

4 0.999885 ± 0.013292i 0.999973 4.57 · 10-6 

5 0.999833 ± 0.016806i 0.999975 4.30 · 10-6 
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no friction at the interface between the two layers and between the lower layer and the bottom. As such, the 
two-layer model does not assume the dissipation of the energy provided by the wind action, with a resulting 
(marginally) stable system. Moreover, notice that, when considering stable scenarios, the value of the real 
part of the poles decreases, while the value of the imaginary part increases. This indicates that the frequency 
of the system considered by the emulation model becomes higher (and the corresponding period lower), 
coherently with the system behavior (see the values of the fundamental period in Table 1).    

Finally, the last column of Table 4 reports the value of the exogenous parameter b1 (see equation (10)). Its 
value is larger for larger values of the fundamental period T, meaning that the effect of the wind action 
increases with T. This is consistent with the system behavior, since the effect of wind action is stronger when 
the stratification is weak (and the corresponding fundamental period is large).     

5. CONCLUSIONS 

The paper shows the development of an emulation model to approximate the output of a one-dimensional 
nonlinear two-layer model, which simulates the wind-induced response of a stratified lake. Five different 
emulation models were identified in correspondence to different stratification scenarios, each providing the 
maximum displacement of the thermocline as a function of the squared wind velocity. Despite their simple 
structure the emulation models show good performances on both the calibration and validation data-set and a 
physically meaningful interpretation of their parameters can be given. Future research will concentrate on the 
emulation of more sophisticated hydrodynamics models (e.g. ELCOM), with the ultimate scope of employing 
emulation models for optimization, thus allowing for the indirect use of process-based models in decision 
making practice. 
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