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Abstract: This paper describes efforts to validate a model of glyphosate resistance in awnless barnyard 
grass (Echinochloa colona (L.) Link.) in the sub-tropical northern grains region of Australia. Possible 
constraints to the perceived usefulness of the model due to hidden or sparsely documented system factors are 
discussed. 

The evolution of herbicide resistance in real weed populations becomes apparent only after years or decades 
of selection. Modelling is therefore particularly useful in investigating and describing the change in the weed 
population and the relative importance of different factors pushing towards or mitigating against that change. 

A key role of modelling in farming systems research is to improve understanding of issues such as the 
evolution of herbicide resistance. However, model results are increasingly important for formulating or 
adjusting recommendations, including for resistance prevention, to be used by land managers. Importantly, 
the research projects under which models of agricultural systems are produced are likely to include the 
development or refinement of recommendations for change as part of their expected outcomes.  

The comprehensiveness of model validation can be thought to equate generally to the strength of an argument 
in favour of a model’s hypotheses. By extension (and by convention), more comprehensive validation is 
often given to equate to a stronger argument in favour of practical recommendations that arise more or less 
directly from the model’s outputs. That is, increasing confidence in the recommendations derived from a 
model is a result of the perceived validation of the model’s predictions as much as of its hypotheses. 
Conversely, validation that is (by necessity or otherwise) partial or piecemeal, and which is structural rather 
than empirical, may not be seen as providing as secure an argument in favour of any recommendations for 
farmers that may be made. In the case of glyphosate resistance, hidden weed population variables and 
insufficiently detailed farming systems data make empirical, operational validation difficult. It is especially 
difficult to validate these models in time for them to be most useful in formulating practical 
recommendations for resistance prevention.  

A model of glyphosate resistance in awnless barnyard grass, a key northern Australian weed has been 
constructed, and attempts made to validate it in order to encourage trust in the model’s predictions and the 
recommendations to industry that might be made from them. Empirical validation was performed through 
comparison with a population of the weed that was confirmed to be glyphosate resistant in 2007. Structural 
and behavioural pattern validation were performed during model development. 

In the historical dataset used for empirical validation, there are both hidden variables (in particular, the initial 
proportion of resistance-conferring alleles in the population before selection began) and sparsely documented 
variables (including the year in which glyphosate was first used, and the number and efficacy of glyphosate 
applications made to this weed population since then) that create difficulty in making direct comparisons 
between the real population and the model’s predictions. The type of data that is available for use in 
empirical validation of the model is also a constraint. Herbicide resistance is identified as a point of failure in 
the agricultural system. Therefore, data from real fields is unlikely to contain information about whether or 
how the rate of evolution of resistance changes over time in response to the types of system actions that are 
included in the model. In this paper, potential validation methods and pitfalls are discussed, showing that 
recommendations can be made using the model’s predictions with some confidence, but that herbicide model 
validation constraints may affect the credibility of the model’s predictions particularly for non-scientist users. 
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1. INTRODUCTION 

Glyphosate is a broad-spectrum post-emergent herbicide that is recognized as being a critical tool for modern 
broadacre farming. It is widely available and has substantial advantages over many alternative herbicides in 
terms of price, operator safety, and environmental safety in a wide range of applications. In particular, 
reduced tillage farming for soil and moisture conservation relies heavily on the frequent use of glyphosate for 
broad spectrum weed control. A significant and growing proportion of farming worldwide uses glyphosate-
resistant crop varieties. Therefore, conserving the usefulness of glyphosate on as broad as possible a 
spectrum of weed species is of critical importance. 

Weed resistance to glyphosate was first identified in 1996, and as of 2009 there are confirmed populations of 
15 species resistant to glyphosate in 13 countries (Heap, 2009). The development of strategies to conserve 
glyphosate efficacy on at-risk weed species is an ongoing aim of weed scientists. 

Several models have been used to develop, refine, and support resistance prevention strategies and 
recommendations. Two Australian farming system models constructed by Diggle et al. (2003) and Werth et 
al. (2008) provided evidence that certain agronomic and ecological system factors were of particular 
importance in determining the risk of developing a glyphosate resistant weed population, and demonstrated 
that risk-minimising strategies using a greater variety of weed control and cropping options could be used to 
reduce the rate of evolution of glyphosate resistance. Richter et al. (2002) used modelling to investigate more 
general factors involved in the evolution of resistance. The model described herein (and in greater detail in 
Thornby et al., 2008) investigates these factors for awnless barnyard grass (Echinochloa colona (L.) Link) 
and demonstrates similarly that preventative strategies can be used to prevent or slow resistance evolution. 

However, empirical validation of these models is problematic. Several key factors in the system are difficult 
to measure, and in validation data sets from real resistant populations, are only gathered after resistance has 
been identified as a significant problem, rather than over the ‘life’ of the system. Accordingly, empirical 
validation of these types of models using external data is uncommon. Further, resistance models have to date 
been formulated as ‘white box’ models – ones in which key factors and relationships between them are 
represented explicitly. This type of model resists empirical validation, which is better suited to ‘black box’ 
regression models in which processes may be bundled together and represented empirically or statistically 
(Barlas 1996). Because of the difficulties in validating glyphosate resistance models, there may be constraints 
to the adoption of recommendations generated or refined using the information gained from modelling the 
system. In this paper a new model of glyphosate resistance is briefly described and the validation of the 
model  using historical data and with other methods is discussed. Implications for the uptake of practical 
recommendations are also discussed. 

2. THE GLYPHOSATE RESISTANCE MODEL 

As noted, several models have been developed to investigate the factors that affect the evolution of resistance 
to herbicides in various regions and farming systems. However, it was felt that glyphosate resistance 
evolution in grains farming in the subtropical northern Australian grains region was a sufficiently different 
problem to merit the construction of a regionally specific model. Of principal interest were the effects that the 
relatively high variation in climate and cropping regimes across the region and between years might have on 
resistance risk factors, and the effects on resistance risk of changes in farming and weed management 
practices made during the course of resistance evolution. 

The crop modelling environment APSIM (Agricultural Production systems SIMulator, Keating et al., 2003) 
was used as the basis for an agroecosystem model of weeds evolving herbicide resistance. APSIM has been 
shown to produce realistic yield predictions for a wide variety of crops. Its scripting language allows the 
development of flexible simulations of management decisions (including cropping and weed control choices, 
frequencies and timings) that can change qualitatively over the life of a simulation. 

Population dynamics factors such as entry of seeds into the seed bank, mortality in the seed bank and seed 
persistence are not modelled in APSIM.  Nor are genetics factors such as gene flow from outside sources, 
gene frequencies, and results of mating between different biotypes. However, APSIM can be linked with 
mathematical process models implemented in Vensim (Ventana Systems, Inc.), which was used to model the 
‘missing’ aspects of weed population dynamics (Smith et al., 2005). Sub-models in Vensim were devised for 
mating and seed bank processes, to fill the life cycle gaps in the crop model (Figure 1). 

The model simulates a weed population with a single-gene glyphosate resistance mechanism that is assumed 
to provide partially dominant resistance strong enough to result in high levels of survivorship at field rates of 
glyphosate (Thornby et al., 2008). The software environment consists of a set of APSIM modules with 
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control and parameter files for the APSIM simulation, and a Vensim mathematical model split into separate 
subsections for seed bank processes, mating processes, and communication between APSIM and Vensim. 
This approach is used to implement a combination of age-structured population dynamics and population 
genetics. The APSIM modules simulate management, weather, soil moisture and nutrient balance, output of 
variables, growth of crops and weed species, and competition between them. Variables are passed between 
the APSIM and Vensim sub-models using a daily time step. All user interaction is through APSIM, so 
variables for reporting are passed from Vensim where appropriate. The model can return a range of variables 
concerning crop and weed growth stage, biomass, stress level, seed production (or yield), seed bank density, 
soil moisture, fertility status, and proportion of resistance in the weed population. A diagrammatic version of 
the model is shown in Figure 1. 

 
  

Figure 2. Rate of evolution of glyphosate resistance in awnless barnyard grass. Figure 2a shows the rate of 
evolution in continuous summer fallow with no tillage and only glyphosate used to control weed flushes. 

Figure 2b shows the rate of evolution where zero-till glyphosate only fallows for several years is followed by 
intensive use of double knock tactics for two years (either 8-9, 10-11, or 12-13 years after the first use of 

glyphosate) followed by the use of double knock on one weed cohort per year thereafter. 

The model is able to simulate a range of weed species given adequate parameterisation. Due to its prevalence 
and relatively high resistance risk (Osten et al., 2007), awnless barnyard grass was chosen as a test case. The 
weed modules use APSIM’s generic plant module, parameterised to simulate multiple barnyard grass cohorts 
or flushes. For further descriptions of the model’s structure and performance, see Thornby et al. (2008). 
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Figure 1. Diagram of model structure, showing those parts of the model (plant growth, agronomy, 
decision-making) controlled by APSIM and those parts (mating between resistant (RR), susceptible (SS) 
and heterozygous (SR) genotypes and seed bank dynamics) controlled by Vensim, and communication 

between them (represented by arrows). Note that outputs (reporting) and simulation-specific inputs 
(control tactics) are both controlled through APSIM. 
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The model demonstrates that, under continuous summer fallows with no tillage and glyphosate the only 
herbicide used to control flushes of barnyard grass, the population becomes dominated by glyphosate 
resistant individuals within 15 years (Figure 2a). This broadly agrees with the predictions made by other 
glyphosate resistance models (Richter et al., 2002; Diggle et al., 2003; Werth et al., 2008). As an example of 
the types of investigation of which the model is capable, Figure 2b shows the effect of switching from zero-
tillage, glyphosate-only summer fallows to an intensive two year campaign of following glyphosate 
applications on every weed flush with a different herbicide a few days later (the double knock tactic), and 
then using the double knock on one flush in every year after that. 

3. VALIDATION AND THEORIES OF VALIDATION 

Ecological models, including agroecosystem models of herbicide resistance, are inherently challenging to 
validate (Rykiel, 1996). In previous resistance models, empirical validation (that is, testing of outputs against 
independent data sets) is either not reported (e.g. Richter et al., 2002 Werth et al., 2008) or qualitatively given 
as being broadly similar to coarse field data (e.g. Neve et al,. 2003). This is largely a limitation of herbicide 
resistance modelling rather than efforts made in constructing any particular models, as discussed below. 

3.1. Empirical validation in system dynamics models 

Model validation can take several forms. The simplest to present and interpret is empirical operational 
validation, wherein model output data on one or more dynamic characteristics of the model are compared to 
data gathered in the real system (Rykiel 1996). Empirical validation is commonly used to demonstrate that 
the model meets some purpose-related performance standards. However, statistical tests of empirical validity 
demand data conditions that system dynamics models rarely satisfy: system dynamics model outputs are not 
serially independent, and may be cross-correlated with other variables of interest (Barlas, 1996). Particularly 
where models attempt to examine causal relationships between real system factors (white-box models) they 
resist validation by statistical tests more appropriate for purely data-driven (black-box) models. 

Beyond these statistical limitations, the data that are typically available (that is, gathered from real-world 
resistance cases) for comparison with models further limit empirical validation. In the field, herbicide 
resistance is detected as a single point of weed control failure. In reality, the evolution of resistance occurs as 
a continuum of changing gene frequencies. The ‘point of failure’ typically occurs, in the case of glyphosate 
resistance, after more than a decade of use. While resistance models give output in the form of a change in 
the proportion of resistance-conferring alleles in a simulated weed population, data in the field is never 
gathered on this key variable until the point of failure. Effectively, this represents an attempt to validate a 
stream of prediction data against a single point of real data which itself is usually an estimate. Clearly, this is 
a significant weakness in assuring that the model is valid.  

3.2. Historical simulations for empirical validation 

These limits notwithstanding, empirical validation of the current model was attempted, through simulating a 
known case of glyphosate resistance and comparing the predictions with what had been observed in the field. 
Towards the end of model development, the first glyphosate resistant population of barnyard grass was 
confirmed at Bellata, New South Wales (Cook et al., 2008), and information from this case was used to test 
the model. Information was gathered about the agronomic history of the paddock through discussions with 
consulting agronomists and weed specialists from the NSW Department of Primary Industries. The 
population is from a paddock that had historically been used for growing winter cereals, with some summer 
cropping only since 2001. First use of glyphosate was estimated to be in 1985, and the paddocks have been 
zero-tilled in most summers since 1990. Residual herbicides have been applied for grass control as part of 
recent summer cropping, but no significant rotation of knockdown herbicides away from glyphosate has been 
made, nor any attempts to control glyphosate survivors. 

There were no records kept on glyphosate application number and efficacy throughout the evolution of 
resistance in the real population. However, expert opinion indicated that most flushes of barnyard grass 
would have been treated with glyphosate after its introduction. Given the further expert assumption that 
glyphosate efficacy was often not extremely high under local conditions, 100 simulations were run with a 
stochastic level of glyphosate efficacy between 80 and 100 per cent on susceptible plants for every 
application made.  

The mean of 100 runs of the stochastic model predicts that 49 per cent of the population is resistant after 15 
years, and that this proportion is over 97 per cent after 18 years (Figure 3). There are only partial quantitative 
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estimates available as to the allele frequency in the population at the time resistance was confirmed. The 
results of herbicide efficacy studies on the population suggest that the proportion of resistant plants across the 
whole paddock was in the range of 40-60 per cent (Cook et al., 2008), but testing is necessarily done on a 
relatively small scale. The mean of the stochastic model runs for 40-60 per cent resistance proportion falls 
between 14 and 17 years after first use of glyphosate. If glyphosate was first used in 1985 (in line with the 
estimate), 21 years elapsed between first use of glyphosate and confirmation of resistance in the population. 
Under these assumptions, the model predicts somewhat more rapid evolution than actually occurred.  

The validation exercise undertaken 
here demonstrates two significant 
difficulties in validating herbicide 
resistance models empirically. The 
first is the issue of poorly 
documented historical variables. 
Over the ‘life’ of glyphosate use in 
the validation paddock, data were 
never kept on several factors that 
are likely to have had some bearing 
on the result; in particular, the 
exact number and efficacy of 
glyphosate and non-glyphosate 
weed control methods that were 
applied to barnyard grass cohorts. 
Similarly, the year in which 
glyphosate was first introduced 
was not recorded and could only be 
assumed based on local 
knowledge. The second problem is 
the issue of hidden system 
variables. Critically, the proportion 
of resistant to susceptible alleles in 
the population before selection 

started is not known, and would most likely not be known in any historical dataset. The frequency of 
resistance-conferring alleles in unselected populations of annual ryegrass (Lolium rigidum L.) is estimated at 
around 1x10-6 to 1x10-8 (Diggle et al., 2003, Werth et al., 2008), and similar frequencies have been assumed 
to apply in barnyard grass populations in the absence of any information suggesting otherwise. At these very 
low gene frequencies, measurement of actual resistance levels in any given weed population is a substantial 
undertaking and unlikely to be performed often, either for parameterising models or for comparing models 
with real cases. Evidence suggests that pre-selection gene frequency has a substantial influence on the time it 
takes for resistance to dominate the population (Neve et al., 2003; Werth et al., 2008). If a population varies 
substantially from the simulations’ starting allele frequency, the predictions made by the model in terms of 
years-to-resistance may be substantially different from the real-world observations. This is not to say that 
there could not be parameters or mechanisms in the model that are incorrect or inappropriately applied; it 
only suggests that for herbicide resistance models, empirical operational validation is not straightforward. 
Given these uncertainties, it is difficult to say definitively whether this model, or any resistance model, 
‘passed’ or ‘failed’ this empirical validation test. 

3.3. Structural and pattern validation 

The essence of the present model, and other herbicide resistance models, is the accumulation or accounting of 
birth, seed production, and death events in interbreeding sub-populations over a long time period. The 
processes for accruing values from one event to the next – addition and subtraction – are well understood. 
Where the values for individual events, such as germination rates or efficacy of field rates of herbicide on 
different biotypes, are each based on one or more real world experiments, accounting processes over time are 
not complex. Validation of the whole model arguably becomes a question of validating the results of each 
year’s operations and relying on the predictable processes of accounting to deal with the ‘dynamic’ part of 
the system. Similarly, various sub-models are based on well understood processes, such as Mendelian 
genetics underlying the breeding sub-model. While the mathematical implementation of these sub-models 
requires scrutiny, the systems they describe are widely accepted. However, given that the model consists of a 
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large number of factors and sub-models interacting, a computational approach is required, to investigate 
whether the interactions between elements in the system cause it to behave in a complex way. 

Barlas (1996) suggests that tests of model structure and the patterns, rather than or as well as specifics, of a 
model’s predictions should be used to validate it. Rykiel (1996) and Sargent (1999) also discuss similar 
structural tests of validity. These tests are particularly suited to ‘white box’ system dynamics models because 
they emphasize the importance of the way the system is represented, and which components of the real 
system are included, over quantifying the fit between predicted and observed data.  

Qualitative ‘expert knowledge’ tests of model structure were conducted throughout the development of the 
model. However, the results or evidence from these tests are fairly subjective, and represented primarily in 
evolutionary structural change in the model. While redoing these tests for any given expert observer is trivial, 
the results for each new observer remain subjective. These tests, therefore, do not necessarily lead to 
substantially increased model credibility, particularly for non-expert stakeholders. 

Extreme condition testing is a more directly quantitative method of testing model structural rigor. Zero values 
were assigned to a range of important parameters including initial weed seed bank populations of some or all 
genotypes, herbicide efficacy on some or all genotypes, and gamete and seed production in some or all 
genotypes. With these values held at zero, predictions about the system become much less complex – it can 
be readily assumed, for example, that when there are no resistant seeds in the seed bank and no novel 
mutation or gene import, the resistant portion of the population will never increase beyond zero. When 
efficacy of herbicides on all genotypes is zero, and assuming no fitness penalty accruing to the resistance 
allele, there would be no change in resistance frequency over time. The model was required to pass multiple 
extreme-condition tests during development, before any meaningful simulations were undertaken. However, 
as discussed below, it is difficult to promote these tests as rigorous tests of validity to non-modelling 
stakeholders, particularly as they effectively represent failure to invalidate the model structure and the 
relationships contained therein, and not ‘positive’ validation for a given set of inputs from which the user can 
(objectively or, more likely, subjectively) interpolate or extrapolate. 

4. DO LIMITS TO VALIDATION CONSTRAIN THE MODEL’S USEFULNESS? 

In agricultural systems, the uptake of models and recommendations derived from them is constrained by the 
level of acceptance of the model by individual users and by the industry sector as a whole (Greer et al., 1994; 
Kayande et al., 2006). User confidence in models has historically been low (Greer et al., 1994), and those 
who promote the usefulness of models in helping to influence decision-making are challenged with 
attempting to improve confidence in their models. In the case of this model, the use or uptake of the 
information generated through applying the model to specific circumstances is likely to be constrained to 
some extent by how readily accepted the model is by end-users and other non-scientist stakeholders. 

Kayande et al. (2006) identify that a knowledge gap between the user’s mental model and the computational 
model affects the perceived value of the computational model. Thus, the objective quality of a model may not 
be the major arbiter of industry acceptance and end-user uptake of recommendations. Greer et al. (1994) note 
that ‘good explanations are the key to acceptance.’ The validation process is a significant part of the 
explanation of a model. Validation demonstrates that the model ‘works’, which by extension improves user 
confidence in the model’s predictions. Empirical validation – particularly direct comparison of model 
predictions and real world values – is arguably the simplest and most concise method of demonstrating model 
accuracy to non-scientist stakeholders. Empirical validation advertises itself as objective and knowledge-
neutral, where structural and pattern validations require expert knowledge of the system to perform (for many 
structural analyses) or interpret. In these cases, the user is to a substantial extent left to trust the unidentified 
expert’s validation, which may be no more persuasive than not presenting validation at all. 

As discussed above, herbicide resistance modelling creates particular challenges for empirical validation, 
because important variables are hidden and others are unlikely to be present in historical datasets. An 
inability to validate herbicide resistance models ‘positively’ against obvious data therefore makes it more 
difficult to explain these models in the most straightforward way. Thus encouraging user confidence in the 
predictions models make is a difficult job. 

5. CONCLUSIONS 

Model validation that satisfies the philosophical and logical requirements of modellers and many other 
scientists may not necessarily encourage non-scientist stakeholders and model users to view the model as 
sufficiently credible. Where the aim of a modelling project is to provide or influence a set of 
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recommendations for industry practice, the most easily presented and interpreted validation is likely to be the 
most persuasive. Non-empirical, non-operational validation techniques seem not likely to fit the bill in this 
case. The extent to which ‘trust’ in recommendations relies on the ability of a model to be shown alongside 
confirmatory real world data may depend on the industry for which the model is produced, but the uptake of 
recommendations, and hence model usefulness in narrowly defined terms, could be constrained by this issue 
of trust or acceptability. Herbicide resistance modelling, as discussed here, appears to have exactly the types 
of issues that act as pitfalls in the validation and trust-engendering process. Due to hidden and poorly 
documented system variables common in long term agricultural systems, direct empirical validation has been 
shown to be inadequate as a test of herbicide resistance model validity. Logically and philosophically 
appropriate validation of these models is possible, through structural analysis, pattern analysis and extreme 
condition testing, but the value of these tests lies in convincing ourselves of the accuracy of the model, and 
not in being useful for encouraging non-scientists to have confidence in the model’s predictions. 
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