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Abstract: The folding patterns of the brain vary dramatically across species. Moreover, the location of 
sulcal (valley) and gyral (ridge) folds differ considerably in terms of their size, shape and extent even within 
a species. A paradigm for cortical pattern formation within or across species has not become apparent. 
Discussions as to how cortical folding patterns occur have recently emerged in the literature. Current 
proposals describe folding through local interactions and include a mechanistic model and a cellular model. 
In this paper we present a simple and elegant mathematical model that offers a possible explanation as to the 
location of cortical fold formation. Our model takes into account global cortex characteristics and can be 
used to model folds across species as well as specific diseases that can occur in human brain folding patterns. 

Our model uses a Turing reaction-diffusion system to model cortical folding. Turing systems have been used 
to study pattern formation in a wide variety of biological applications using 1D, 2D and spherical domains. 
Turing systems use an activator and inhibitor and under certain conditions, a steady state will emerge causing 
a pattern to form. We employ phenomenological kinetic equations of Barrio-Varea-Maini (BVM) for our 
reaction-diffusion model. 

Due to the shape of the lateral ventricle (LV) in the cortex, we use a prolate spheroidal domain. A prolate 
spheroid is created by rotating an ellipse about its major axis. The focal distance of the prolate spheroid is 
determined by the major and minor axes. It has been suggested that cortical pattern formation is due to 
regional patterns of intermediate progenitor (IP) cells in the subventricular zone (SVZ) of the cortex. During 
cortical development certain radial glial cells in the ventricular zone (VZ) are activated to create IP cells that 
travel to the SVZ. These areas lead to neuron amplification and gyrus formation. Our model approximates the 
shape of the LV with a prolate spheroid and the VZ with a prolate spheroidal surface. 

With our model we are able to predict cortical folding patterns that correlate with cortical observations. As 
we increase the scaling of our prolate spheroidal domain we observe more elaborate cortical patterns. 
Additionally, our simulations reveal that the occurrence of the directionality of primary sulci occurring in 
different species can be accounted for by using the focal distance parameter in our model. Changing the focal 
distance corresponds to changing the shape of the VZ, resulting in changes in the location and type of sulcal 
pattern observed. By encapsulating global cortex shape characteristics, our model also has the ability to 
predict why the cortex of certain species may have little or no folding and it can link the evolutionary 
development of cortical sulcal formation to the eccentricity of the lateral ventricle. 

Our model is also able to elucidate reasons as to how certain diseases in cortical pattern formation may occur. 
Polymicrogyria is a cortical malformation disease that occurs in the human brain and results in an over 
abundance of cortical folding. This disease is thought to be a neuronal migration disorder and can result in 
developmental delays, seizures and facial disfigurations. Numerical simulations with our model have enabled 
us to better understand cortical characteristics which can lead to excessive cortical folding. This application 
of our model, coupled with patient magnetic resonance imaging (MRI) data of the cortex, may explain how 
certain cortical pattern formation disease processes develop. 

By applying prolate spheroidal harmonics to a Turing system, we have developed a chemically-based 
mathematical model that predicts the order and directionality of sulcal pattern formation across species based 
on global shape characteristics. Our model is able to predict and explain the consistency in pattern formation 
across species. Additionally our model is able to elucidate global cortex characteristics that may result in 
cortical pattern formation diseases. 

Keywords: Brain, cortical folding, pattern formation, gyrus, polymicrogyria, prolate spheroid, reaction 
diffusion system, sulcus, Turing pattern 
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1. INTRODUCTION 

A paradigm for the development of cortical folding patterns in the brain remains an open question. The 
valleys (sulci) and ridges (gyri) of the folding patterns vary considerably within and across species. A 
number of hypotheses have been proposed to explain cortical folding, but no consensus has been reached. 
Current theories tend to be based on local interactions in the cortex. One theory is mechanistic, and is the 
axonal tension hypothesis (Van Essen, 1997). Tension along the white matter axons is thought to be the basis 
for cortical folding. Axon tension pulls strongly interconnected regions together so that the axonal distance 
within the white matter is reduced, leading to an outward fold which forms a gyrus. Weakly interconnected 
cortical regions can be separated by greater axonal distances and so the tension is not as great, leading to 
inward folds and sulci formation. More recently, the intermediate progenitor (IP) hypothesis (Noctor et al., 
2004), followed by the IP model (Kriegstein et al., 2006) have been put forward to explain cortical folding. 
These hypotheses are cellular based. It is known that as the cortex develops, it is initially composed of a layer 
of proliferative cells lining the lateral ventricle called the ventricular zone (VZ). Subsequently, a second 
proliferative layer, called the subventricular zone (SVZ), forms. IP cells, which are located in the SVZ, can 
amplify the number of neurons that travel to the cortex. The IP model suggests that only subsets of the IP 
cells create a local amplification, which results in gyrus formation.  

In this paper we present a mathematical model to explain how IP cell subsets are distributed spatially and 
temporally in the developing cortex. We give details of a Turing reaction-diffusion system to model cortical 
folding pattern formation. Turing systems have been used model a wide variety of complex pattern formation 
in biological systems, including fish patterns (Kondo, 1995), animal coat patterns (Murray, 2003), and 
bacteria (Varea, 1999). In the following sections we give details of our model and demonstrate that we are 
able to predict cortical folding patterns that correlate with cortical observations. We also describe how our 
model may be extended to provide a link between the concepts of the axonal tension hypothesis and the IP 
model. Additionally, we discuss how certain diseases in cortical pattern formation may occur and how patient 
data of the cortex may be used to refine this model.  

2. THE MODEL 

The IP hypothesis explains that during the development of the cortex, certain radial glial cells in the VZ are 
activated to create IP cells that travel to the SVZ. The lateral ventricle and VZ are critical components in the 
development of cortical pattern formation. Thus, we model the shape of the lateral ventricle with a prolate 
spheroid and the VZ with a prolate spheroidal surface. The direction of the major axis of the prolate spheroid 
corresponds to the major axis of the later ventricle. Using a prolate spheroidal domain enables the focal 
distance to model the eccentricity of the lateral ventricle.  

In our model, we assume that activator and inhibitor reactants regulate IP cell production. Thus, we are able 
to using a Turing reaction-diffusion system as the basis of our model. Turing systems use an activator and 
inhibitor and under certain conditions, a steady state will emerge causing a pattern to form. Our mathematical 
model is chemically based and takes advantage of global characteristics of the cortex rather than local 
interactions. 

2.1. Turing Systems 

A Turing system is a reaction-diffusion system of two chemical morphogens representing an activator and an 
inhibitor. Two criteria need to be satisfied for a system to be a Turing reaction-diffusion system: i) the system 
is linearly stable in the absence of diffusion; ii) the system becomes linearly unstable when diffusion is 
present. In order to realistically capture biological phenomena, the reaction kinetics must be linear and 
nonlinear. We use the Barrio-Varea-Maini (BVM) Turing model (Barrio et al., 1999) because it does not 
assume any particular kinetic scheme and tries to capture the phenomenon of the pattern that forms. The 
BVM system is 
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where u and v are the activator and inhibitors respectively at position x and time t and are centered around the 
steady state (u0, v0) = (0, 0), d is the ratio of diffusion coefficients, δ is a positive constant that is inversely 
proportional to the domain scaling, the linear interaction parameters are represented by α, β and γ, and r2 and 
r3 represent the quadratic and cubic interaction parameters respectively. Expanding the reaction kinetics in a 
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Taylor series around the steady state and neglecting higher order terms leads to the following conditions that 
must be satisfied for the system to be a Turing system:  
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2.2. Prolate Spheroidal Surface 

A prolate spheroid is created by rotating an ellipse about its major axis and has focal distance 22 baf −= , 

where a and b are the major and minor axes, respectively. Prolate spheroidal coordinates are expressed as   
(ξ, η, φ) where ξ is the radial term with ξ ≥ 0, η =cos θ where θ is the asymptotic angle with respect to the 
major axis with -1 ≤ η ≤ 1, and φ is the rotation term with 0 ≤ φ ≤ 2π.  

To examine Turing patterns on a prolate spheroidal surface, we solve the Helmholtz Equation, 

022 =+∇ XkX  with respect to prolate spheroidal coordinates, where k is the eigenvalue and is determined 
by the domain. Using the BVM system, k2 is related to the domain scaling and is determined to be 
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where λ and m are constants. The solutions of R and S involve radial equations and Legendre Functions that 
contain parameters m and n and so they will be denoted Rmn and Smn. The constant λ represents the spheroidal 
eigenvalues which also depend on m and n. It is also a function of kf/2 and will be denoted λmn for brevity. 
Note that m and n are the spheroidal harmonic indices.  

As we are interested in a prolate spheroidal surface domain, we only consider solutions which are radially 

invariant, i.e. 0=
ξd

dR  for a prolate spheroid of constant radius ξ = ξ0. Thus, Equation (3a) yields 
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, which we will write as k2 = Amn.  (4) 

The significance of Equation (4) is that it enables pattern formation to be predicted by relating a given 
domain scaling (controlled by k2) and domain shape (the eccentricity of the prolate spheroid controlled by f) 
to the arising pattern (indicated by the spheroidal indices m and n). Further details of these derivations can be 
found in Striegel, 2009. 

3. SIMULATIONS AND RESULTS 

3.1. Numerical Simulations 

We discretized the BVM Turing System in (1) using a Forward Euler (forward time, central space) method 
on a 34 x 68 grid with respect to θ and φ. Periodic boundary conditions with respect φ to were used and 
boundary conditions with respect to θ were chosen such that continuity around the north and south poles 
were preserved. The prolate spheroid surface radius, ξ0, was selected so the prolate spheroidal shell conserves 
a surface area of 4π, similar to a unit sphere. Note that ξ0, depends on the value of the focal distance f. 
Parameter values for (1) satisfy the conditions of (2) and were set as follows: α = 0.899, β = -0.91,  
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Figure 1: Prediction of Pattern Formation. A) Amn versus k for n = 8, 9, 10 (different colors) and 
m = 0, ..., n (different line styles). The asterisk at Amn = 90 (i.e. k2 = 90) corresponds to the curve A59 
and predicts a (5, 9) pattern. B) Simulation of equations in (1) projected on a prolate spheroid with 
δ = 0.00433 (corresponding to k2 = 90) and f = 1. C) Projection of B) onto a plane such that the left and 
right edges connect and the top (bottom) edge corresponds with the north (south) pole.  

γ = -0.899, d = 0.5319, r2 = 0 and r3 = 3.5. Parameter values for δ and f were varied to control the domain 
scale and domain shape. 

3.2. Pattern Formation 

The pattern that is formed can be described by the harmonic solution (m, n). Given a two tone color gradient 
such as black to copper, m corresponds to the number of copper (or black) spots traversing φ and n 
corresponds to m plus the number of shifts from copper to black (or black to copper) traversing θ for a fixed 
φ. Copper regions can be considered to be activated regions and black regions are non-activated regions (see 
Figures 1B, 1C). The arising pattern can be predicted by examining the solutions of Equation (4). Figure 1A 
plots Amn for n = 8, 9, 10 and m = 0, …, n when the focal distance f = 1 (causing ξ0 = 2.164). The asterisk 
located at k2 = 90 corresponds to the curve A59, meaning that a (5, 9) pattern is predicted. Interestingly, when 
k2 = 90 then δ = 0.00433 and simulations of the pattern produced for this value of δ and for f = 1 do indeed 
correspond to a (5, 9) pattern as illustrated in Figures 1B and 1C. 

3.3. Transverse and Sectorial Patterns 

A number of simulations were carried out that studied the role of domain scaling on the pattern formation of 
transverse and sectorial curves. Sectorial curves are formed when the spheroidal harmonic indices are equal. 
For example (m, n) = (1, 1) forms one sectorial curve, (2, 2) forms two sectorial curves, etc. Transverse 
curves are formed for spheroidal harmonic indices (0, n) for n even. For example, (0, 2) forms one transverse 
curve, (0, 4) forms two transverse curves, etc. Examples of transverse and sectorial curves are shown in 
Figure 2.  

Interestingly, as focal distance increases, the order in which transverse and sectorial curve formation changes 
(see Figure 3). As the domain scaling k2 increases for f = 4.5, the harmonic A02 occurs first, followed by A11 
and then A04 (see Figure 3A). This corresponds to a transverse pattern formed first followed by a sectorial 
pattern. When f = 6.5, as the domain scaling (k2) increases, the harmonic A02 occurs first, followed by A04, 
then A11 (see Figure 3B). This corresponds to two transverse patterns being formed before a sectorial pattern. 
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3.4. Multiple Sectorial Patterns 

If focal distance is chosen to be small enough, then a scenario can arise where a sectorial curve is formed 
before any transverse curves. Simulation results indicate this to be true for focal distances between 1 and 3.7 
(Striegel and Hurdal, 2009). If conditions are such that no transverse sulci are formed after the sectorial 
curve, then the domain becomes angularly invariant. In such a situation, as the domain scaling increases, 
greater numbers of sectorial curves are generated. This result is implied by Figure 1A. If only sectorial 
patterns are considered (which are given by Amn for m = n), then as domain scaling (k2) increases, the number 
of sectorial curves increases.  

Simulations for this scenario correspond to solving the Helmholtz Equation in one dimension since our 
domain is angularly invariant. A small focal distance of f = 1 and a large domain scaling of k2 = 20 generates 

 
Figure 2. Transverse and Sectorial Curves. A) Prolate spheroidal harmonic (1, 1) 
corresponds to one sectorial curve formation. B) Projection of A) onto a plane such that the 
left and right edges connect and the top (bottom) edge corresponds with the north (south) 
pole. C) and D) Prolate spheroidal harmonic (0, 2) corresponds to the formation of one 
transverse ring and is projected onto a prolate spheroid and rectangle. E) and F) Prolate 
spheroidal harmonic (0, 4) corresponds to the formation of two transverse rings. 

A. 

B. 

C.

D.

E.

F.

A. B.

Figure 3. Effect of Focal Distance on Sectorial and Transverse Curve Formation.  
A) Amn versus k for f = 4.5. Notice as k increases, the graph of k2 intersects with the 
harmonic curves in the order of A02, A11, A04. B) Amn versus k for f = 6.5. The Amn 
curves have shifted and now, as k increases, the order of intersection is A02, A04,  A11. 
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the results in Figure 4. Activated regions form when the amount of activator is positive (Figure 4A), resulting 
in multiple sectorial patterns forming (Figures 4B, 4C). 

4. DISCUSSION AND CONCLUSIONS 

Let us consider how prolate spheroidal harmonics may be framed in terms of cortical sulci of the brain. 
Sectorial sulci in the brain correspond to sulci that extend from the frontal lobe around the Sylvian fissure to 
the temporal lobe, matching the direction of the major axis of the prolate spheroid approximating the lateral 
ventricle. Examples of sectorial sulci include the calcarine sulcus and the cingulate sulcus. Transverse sulci 
correspond to rings around the VZ, and examples include the central and precentral sulcus. 

In terms of IP cell production, a sulcus is formed when IP cells on either side of a sulcus are activated, 
causing the gyral banks on either side of a sulcus to be created. Activated (copper) regions of the spheroidal 
harmonic curves (see Figure 2) can be considered to be regions of activated IP cells, leading to gyrus 
formation. Inactivated regions would lead to sulcus formation. 

We observed that as focal distance increased, a changed occurred in the order in which transverse and 
sectorial curves formed. The change from transverse to sectorial curves is of significance rather than the 
number of curves formed. Thus, focal distance affects the order in which curves, and hence sulci, are formed. 
We offer two interpretations of these results, both of which 
correlate well with what is observed in the cortex.  

One interpretation is related to evolution. As species have 
evolved, the cortex has expanded and the focal distances of the 
lateral ventricle and VZ have increased. The results of Figure 3 
can be interpreted to mean that earlier in an evolutionary 
timeline when the lateral ventricle focal distances are smaller, 
the first transverse sulcus appears. Later in the evolutionary 
timeline, when the focal distances are larger, a second 
transverse sulcus appears. This is indeed what is observed in 
primates (see Figure 5). The first transverse sulcus can be 
interpreted as the formation of the calcarine sulcus, which is 
observed in both prosimian and anthropoid primates. However, 
prosimians, such as the lemur, are primitive primates and most 
are distinguished from higher primates by the absence of the 
central sulcus (Radinsky, 1975). The formation of a second 
transverse sulcus due to a larger focal distance as in Figure 3B 
can be interpreted as the formation of the central sulcus in 
higher order primates (see Figures 5C, 5D) due to the larger VZ 
focal distance. One example is the howler monkey.  

Another interpretation is related to cortical disease. 
Polymicrogyria, meaning many small gyri, is a cortical disease 
in which there is an overproduction in the number of folds. It is 
characterized by an excessive number of small prominent 
convolutions spaced out by shallow and enlarged sulci. One 

Figure 4. Formation of Multiple Sectorial Curves. Under certain conditions, a large domain 
scale (k2 = 20) and small focal distance (f = 1) can lead to multiple sectorial curves forming. 
When the amount of activator is positive (Fig. A), activated (copper) regions are formed and
lead to the pattern shown. Pattern projected on A) a prolate spheroid and B) a plane. 
 

C.B.A. 

A. B. 

C.

Anthropoid suborder

Prosimian suborder

D. 

Figure 5. Prosimians versus 
Anthropoids. A) Ring-Tailed Lemur 
(Lemur catta). B) Slow Loris 
(Nycticebus coucang). C) Mantled 
Howler Monkey (Alouatta palliata). 
D) Lar Gibbon (Hylobates lar). The 
central sulcus is shown in red. Most 
prosimians do not have a central 
sulcus. Images adapted from 
http://www.brainmuseum.org. 
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form of polymicrogyria occurs with hydrocephalus (Colombani, 2006) and the enlarged sulci tend to be in 
the sectorial direction. Hydrocephalus causes the lateral ventricle to enlarge. The result is in an increase of 
domain scale. There is also a change in the aspect ratio of the major and minor axes of the prolate spheroid, 
resulting in a decrease in the focal distance. Under certain conditions, our model predicts that a decrease in 
the focal distance and an increase in the domain scale results in multiple sectorial sulci being formed (see 
Figure 4), and this is the pattern of folds observed in this particular form of polymicrogyria.  

The application of our model to polymicrogyria needs to be experimentally verified. Patient magnetic 
resonance imaging (MRI) data of the cortex would allow measurements of the lateral ventricle to be 
obtained. If such measurements were available for healthy subjects and subjects with diseases such as 
polymicrogyria, realistic values for the lateral ventricle could be incorporated into our model. This would 
then enable our model predictions to be verified, leading to explanations of how certain cortical pattern 
formation disease processes develop. 

In conclusion, we have presented a mathematical model that is chemically driven and offers a possible 
explanation as to the location of the formation of cortical folds. We modelled the lateral ventricle as a prolate 
spheroid and the ventricular zone as a prolate spheroidal shell. By using a BVM Turing reaction-diffusion 
system we have been able to make predictions as to how cortical folding may occur, including interpreting 
the order and directionality of folds that may form. Our results can be applied to cortical evolution as well as 
cortical disease processes. Our model can predict why certain species have little or no folding and it can 
predict why certain cortical diseases may have excessive folding. This model represents an extension of the 
IP model and explains consistency in cortical folding. One possible extension of our model would be to 
incorporate axonal tension to account for intra-species variability in cortical folding. Such an extension 
would link the concepts of the IP model to the axonal tension hypothesis. Our model is able to capture global 
shape characteristics of the cortex and represents an important step in improving our understanding of 
cortical folding pattern formation of the brain.  

ACKNOWLEDGMENTS 

Travel funding for this conference has been supported in part by the Association for Women in Mathematics. 
Images in Figure 5 were adapted from the University of Wisconsin and Michigan State Comparative 
Mammalian Brain Collections, http://www.brainmuseum.org. The original preparation of the images and 
specimens were funded by the National Science Foundation and the National Institutes of Health. 

REFERENCES 

Barrio, R.A., C. Varea, J.L. Aragon, P.K. Maini, (1999), A two-dimensional numerical study of spatial 
pattern formation in interacting Turing systems. B Math Biol, 61, 483-505. 

Colombani, M., M. Chouchane, G. Pitelet, et al., (2006),  A new case of megalencephaly and perisylvian 
polymicrogyria with post-axial polydactyly and hydrocephalus: MPPH syndrome. Eur J Med Gen, 49, 
466-471. 

Flammer, K. (1957), Spheroidal Wave Functions. Stanford University Press, Palo Alto. 
Kondo, S., R. Asai, (1995), A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. 

Nature, 376, 765–768. 
Kriegstein, A., S. Noctor, V. Martinez-Cerdeno, (2006), Patterns of neural stem and progenitor cell division 

may underlie evolutionary cortical expansion. Nat Rev Neurosci, 7, 883-890. 
Murray, J.D. (2003), Mathematical Biology II: Spatial Models and Biomedical Applications, Springer-

Verlag, Berlin. 
Noctor, S.C., V. Martinez-Cerdeno, L. Ivic, A.R. Kriegstein, (2004), Cortical neurons arise in symmetric and 

asymmetric division zones and migrate through specific phases. Nat Neurosci, 7, 136-144. 
Radinsky, L. (1975), Primate brain evolution. Am Sci, 63, 656-663.  
Striegel, D.A. (2009), Modeling the Folding Pattern of the Cerebral Cortex. PhD Thesis, Florida State 

University, Tallahassee, Florida, U.S.A. 
Striegel, D.A., M.K. Hurdal, (2009), Chemically-based mathematical model for evolutionary development of 

cerebral cortical folding patterns. Preprint. 
Van Essen, D.C. (1997), A tension-based theory of morphogenesis and compact wiring in the central nervous 

system. Nature, 385, 313–318. 
Varea, C., J.L. Aragon, R.A. Barrio, (1999), Turing patterns on a sphere. Phys Rev E, 60, 4588-4592. 
 

670




