
Solving the Chemical Master Equation with the

Aggregation-Disaggregation Method

M. Hegland1

1 Center for Mathematics and Its Applications (CMA), Mathematical Sciences

Institute, The Australian National University, Australian Capital Territory

Email: Markus.Hegland@anu.edu.au

Abstract. Originally, aggregation and disaggregation were considered as acceleration techniques
similar to multigrid methods for the solution of linear systems of equations. Recently we have demon-
strated that these methods can also be used for the numerical solution of the chemical master equation.
Here three scenarios are discussed where aggregation and disaggregation accelerate convergence, re-
duce complexity and lead to approximate solutions.
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1. INTRODUCTION

The chemical master equation (CME) describes how the probability distribution of the chemical
reaction counts or chemical species counts changes over time. The numerical solution of the CME is
challenged by problems relating to the number of reactions involved, large copy numbers, reactions
with different time scales and singular non-symmetric matrices. The reduction of the system size is
an essential approach which addresses many of these problems. Such a reduction which maintains
total probability is aggregation. In order to make the solution of a reduced system useful to the
solution of the “big problem” one requires an interpolation type approach called disaggregation which
associates a probability distribution on the full state space with the reduced distribution. Different
disaggregation methods lead to algorithms with different properties. In the rest of this paper it will
be shown how three different disaggregations lead to multigrid-style methods, to faster solvers for the
reduced problems and to piecewise linear approximations.

2. ACCELERATING CONVERGENCE

Here we introduce some of the basic concepts for aggregation-disaggregation methods and illustrate
how a chemical master equation solver could be constructed using these methods. We will assume
that the state space is finite but large with elements {0, . . . ,M−1}. A random variable on this state is
denoted by X and a stochastic process by X(t). A probability distribution on this state space is then
a vector with M non-negative elements. In particular we define p and p(t) to have the components
pi = P (X = i) and pi(t) = P (X(t) = i) respectively, for i = 0, . . . ,M − 1 and note that the indices of
the components of p start with zero. We assume that X(t) is a Markov process and thus p satisfies a
master equation of the form

dp

dt
= Ap

and some initial condition p(0) = p0. An application of the backward Euler method to this problem
gives for t0 = 0 and tn = tn−1 + ∆t the linear system of equations

(I −∆tA)p(tn) = p(tn−1) (1)
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which provides an approximation of the probability distribution (which for simplicity and as we will not
discuss time discretisation we also denote by p(tn)). As the number of unknowns M is large, iterative
methods to solve these equations would be used. The simplest methods including Richardson, Jacobi
and Gauss-Seidel methods, may, however converge slowly. This is a motivation for multigrid methods
in general, and the aggregation-disaggregation approach in particular.

The approach has been discussed by [2] and uses two matrices, an aggregation matrix Eh (which
provides the restriction in multigrid terminology) and the disaggregation matrix Fh (which provides the
prolongation). The aggregation matrix Eh ∈ RM/h,M is characterised by the width of the aggregation
cell h. (We assume here for simplicity that M and h are powers of two.) Specifically, aggregation
defines a new probability distribution p defined by

pk = (Ehp)k = pkh + pkh+1 + · · · p(k+1)h−1, for k = 0, . . . ,M − 1. (2)

One can see that p is the probability distribution of the random variable Y = bX/hc where b·c denotes
the truncation to the next integer. The following very simple but fundamental proposition shows how
the original distribution is recovered from the aggregated one using disaggregation.

Proposition 1. Let p ∈ RM be a probability distribution with pi = P (X = i) and Y = bX/hc and let
D ∈ RM,M be a diagonal matrix with components Di,i = P (X = i | Y = bi/hc) Then

p = DET
h p

where p is the probability distribution of Y and ET
h is the transpose of the aggregation matrix defined

in equation (2).

Proof. As pk = P (Y = k) one sees that (ET
h p)i = P (Y = bi/hc) and thus

[DET
h p]i = Di,i P (Y = bi/hc)

= P (X = i, Y = bi/hc)
= P (X = i) = pi

as Y = bX/hc.

It follows that for the disaggregation matrix Fh = DET
h one has p = Fhp and as p = Ehp one has

p = FhEhp.

This was made possible because Fh depends on p. Note that in particular FhEh has a rank less or
equal to M/h and it thus cannot be equal to I which has a rank of M . The aggregation-disaggregation
methods however, approximate this ”ideal” Fh by using earlier iterates in an iterative method for the
solution of equation (1). The convergence of the technique is based on a contractivity of the underlying
procedure.

3. REDUCING COMPLEXITY

A major application of aggregation is the reduction of the size of the state space and consequently,
the computational complexity of the CME. In this section we consider aggregation which is based
on properties of the propensity functions. The state space is here a set of integer tuples e.g. x ∈
{0, . . . ,M − 1}d where d is the number of reactions. The CME has the form

dpx

dt
=

d∑
j=1

λj(x− ej)px−ej − λj(x)px. (3)
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The propensities λj(x) are assumed to be defined on all of Zd but are zero if any of the components
xi of the argument x are either less than zero or larger or equal to M . It is furthermore assumed here
that there exist functions νj : Zd → R+ and an integer matrix Z ∈ Zd,d such that

λj(x) = νj(Zx), j = 1, . . . , d. (4)

If X is a random variable with probability distribution p then Y = ZX is a random variable with
probability distribution p defined by an aggregation EZ where

py = (EZp)y =
∑

x∈Z−1y

px.

One then has

Proposition 2. Let X(t) by a stochastic process with a probability distribution p(t) satisfying equa-
tion (3). If the propensities λj satisfy the equations (4) then the probability distribution p of the
stochastic process Y (t) = ZX(t) satisfies the master equation

dpy

dt
=

d∑
j=1

νj(y − zj)py−zj
− νj(y)py,

where zj = Zej are the columns of the matrix Z.

Proof. The claim follows directly from the relation (4) and equation (3):

dpy

dt
=
(
EZ

dp

dt

)
y

=
∑

x∈Z−1y

d∑
j=1

λj(x− ej)px−ej − λj(x)px

=
d∑

j=1

∑
x∈Z−1y

νj(Zx− zj)px−ej
− νj(Zx)px

=
d∑

j=1

νj(y − zj)
∑

x∈Z−1y

px−ej
− νj(y)

∑
x∈Z−1y

px

=
d∑

j=1

νj(y − zj)py−zj
− νj(y)py

as
∑

x∈Z−1y px−ej
=
∑

x′∈Z−1(y−zj)
px′ = py−zj

where zj = Zej .

The most important example is the transformation from the interpretation of chemical reactions
as counting processes to actual reactions between chemical species defined the by counts of the various
species involved. In this case the vector y corresponds to the vector of counts of species and the matrix
Z is the stoichiometric matrix. If the number of species is much lower than the number of reactions
then this approach may substantially reduce the complexity of the master equation. The trade-off is
that one has to deal with shifts zj and thus more dense and less regular matrices of the CME. One
also looses the triangular structure. However, as one is only interested in p methods to solve this
reduced CME are of interest.

A second example is based on the fact that many reactions are reversible and thus the propensities
(which depend on the species counts) do depend on the differences of the counts xjf

− xjb
of the

forward and backward reactions only. Thus again one can introduce this difference as a new variable
y and can get a reduction of the state space of up to a factor two. This comes at the cost of a matrix A
which will have a symmetric structure (but not symmetric values) which is roughly a reduced version
of A+AT if A is the original matrix.

While in general the existence of a (best Z) is an algebraic problem usually such a Z is given by
the application and is often related to species counts and to conservation of sums of such counts.
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One may now introduce a disaggregation matrix FZ which leads to algorithms for the solution of
the reduced system based on solvers for the larger system for a reduced state space. To get this one
assumes that Z and has been suitable transformed (using results from number theory), such that it
is of the form Z = [I, Z1] where I is the identity such that y = Zx = x0 + Z1x1 where x0 and x1 are
the vectors of the first d components of x and the remaining d − d components, respectively. If one

now chooses the disaggregation to be F =
[
I
0

]
, i.e., (Fp)(y,0) = py and (Fp)(x0,x1) = 0 else, one has

EF = I. One can show that the CME for p given in proposition (2) then takes the form

dp

dt
= EZAFZ p

and the initial condition is p(0) = EZp(0). Based on this equation one can now solve the original
CME for a very short time so that the state space where the probability distribution is only a small
factor larger than the state space of the reduced variable y, then use an aggregation with EZ followed
by a disaggregation with FZ to ”compress” the probability distribution. If this process is repeated
one obtains an efficient algorithm to solve the CME using a fast solver for the original CME on a
small subspace.

4. APPROXIMATING SOLUTIONS

Here we consider again the piecewise aggregation but will use a disaggregation which is based on a
piecewise linear approximation. A related approach was first suggested by Ferm and Loetstedt in
their paper [1] and we will consider an error analysis of a simplified variant of their proposal. The
motivation for this approach is the often one finds that the probability distribution varies slowly over
the states x. For the following let Eh be as defined in equation (2) and Fh defined by

(Fhp)x =
pbx/hc

h
+ (x− yh− (h− 1)/2)

pbx/hc+1 − pbx/hc−1

2h2
, (5)

where pM/h = p0 and p−1 = pM/h−1. It turns out that this disaggregation satisfies the consistency
condition EhFh = I and furthermore, it recovers “linear parts” of the original probability distribution
exactly:

Proposition 3. Let the aggregation matrix Eh ∈ RM/h,M be defined as in equation 2 and the disag-
gregation matrix be defined as in equation 5. Then

(i) EhFh = I

(ii) if px = αx+ β for some x = k0h, . . . , k1h then

(FhEhp)x = px, for x = (k0 + 1)h, . . . , (k1 − 1)h

Proof.

(i) Let (p̃)y = Fhp for some probability distribution p. Then

(Ehp̃)y =
yh+h−1∑

x=yh

p̃x

= py +
yh+h−1∑

x=yh

(x− yh− (h− 1)/2) (py+1 − py−1)/(2h2).

As
∑yh+h−1

x=yh (x− yh− (h− 1)/2) = 0 one then gets (Ehp̃)y = py and thus EhFhp = p.
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(ii) Let p = Ehp. One then has

py =
yh+h−1∑

x=yh

(αx+ β) = αh(hy + (h+ 1)/2) + hβ, for y = k0, . . . , k1

and with x = yh+ i, for i = 0, . . . , h− 1 and y = k0 + 1, . . . , k1 − 1 one gets for p̃ = Fhp:

p̃x = py/h+ (x− yh− (h− 1)/2) (py+1 − py−1)/(2h2)

= α(hy + (h− 1)/2) + β + (x− yh− (h− 1)/2)α
= αx+ β.

as py+1 − py−1 = 2αh2.

For a bound on the approximation error of FhEhp one rewrites the aggregation and disaggregation
matrices using cyclic matrices and sampling. First let the cyclic shift matrix S ∈ RM,M be defined
by (Sp)x = px+1 where, as usual, pM = p0. Furthermore, let the sampling matrix Qh ∈ RM/h,M

be defined by (Qhp)y = pyh. Furthermore, define the two polynomials eh(z) and fh(z) by eh(z) =∑h−1
k=0 z

k and

fh(z) =
eh(z−1)

h
+
zh − z−h

2h2

h−1∑
k=0

(k − (h− 1)/2)z−k. (6)

One can then show the lemma

Lemma 1. Let S by the cyclic shift matrix, Qh the sampling matrix and eh and fh be suitably defined
polynomials. Then

(i) for eh(z) =
∑h

k=0 z
k one has

Eh = Qheh(S)

(ii) for fh(z) as defined in equation (6)
Fh = fh(S)QT

h

(iii) and with Dh = diag(exp(−2πikh/M))M
k=1 one has

QT
hQh =

1
h

h−1∑
j=0

Dj
h

The proof of this lemma is obtained by inserting the definitions. Note the third statement which
amounts to a matrix version of the sampling theorem. Using this lemma and the triangle inequality
one then gets the error bound

Proposition 4. The error norm of the aggregation-disaggregation approximation FhEhp is bounded
by

‖FhEhp− p‖ ≤ ‖fh(S)eh(S)p− p‖+
1
h

h−1∑
j=1

‖fh(S)Dj
heh(S)p‖ (7)

In signal processing terminology, the first term in the bound is the approximation error of the
the combination of the two filters while the second term takes into account the aliasing which occurs
because of the sampling. Both errors can be bounded theoretically and we found that both grow like
O(h2). This growth is confirmed experimentally where the error of an approximation of the probability
distribution of a Poisson process was determined, see table 1.
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Table 1: error norms of the piecewise linear approximation for a Poisson distribution with λt = 6 ·104.

h l1-error ratio l2-error ratio

1 0 − 0 −
2 3.85 · 10−8 − 1.19 · 10−9 −
4 8.07 · 10−6 209.00 2.45 · 10−7 207.00
8 3.24 · 10−5 4.02 1.13 · 10−6 4.59

16 1.34 · 10−4 4.14 4.68 · 10−6 4.16
32 5.66 · 10−4 4.21 1.94 · 10−5 4.15

64 2.57 · 10−3 4.55 8.60 · 10−5 4.43

128 1.34 · 10−2 5.21 4.39 · 10−4 5.10

256 7.48 · 10−2 5.58 2.37 · 10−3 5.39

512 0.37 4.90 1.04 · 10−2 4.39

1,024 0.66 1.80 1.69 · 10−2 1.63

2,048 1.26 1.91 2.62 · 10−2 1.55

4,096 1.81 1.43 3.05 · 10−2 1.16
8,192 1.86 1.03 3.29 · 10−2 1.08

16,384 1.93 1.04 3.28 · 10−2 1.00

5. CONCLUSION

Aggregation and disaggregation is related to restriction and prolongation of multigrid methods, com-
pression and decompression in image and signal processing and sampling and interpolation of function
approximation. These three views led to three different styles of algorithms, a multigrid method for
the solution of the time-discretised CME, an efficient method for the solution of the reduced sys-
tem using a generic solver for the original system and a piecewise linear approximation of smooth
probability distributions which preserve total probability.

Many challenges have not been touched in this short paper. This includes in particular the solution
of problems with many reactions. The most promising approaches suggested previously include sparse
grids [3] and the finite state projection method [4]. Both approaches are based on aggregation and
disaggregation. In comparison to traditional numerical techniques the functions to be approximated
here depend on (vector) integer variables. A rigorous analysis of errors requires the application of
Fourier space techniques and is currently under development.
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