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Abstract

It is well known that many realistic mathematical models of biological and chemical systems, such
as enzyme cascades and gene regulatory networks, need to include stochasticity. These systems can
be described as Markov processes and are modeled using the Chemical Master Equation (CME). The
CME is a differential-difference equation (continuous in time and discrete in the state space) for the
probability of certain state at a given time. The state space is the population count of species in the
system. However we can also consider the CME with the state space given by the counts of the num-
ber of reactions occurring in the system. This form of CME is not frequently used in the literature.
This paper, through new results, gives motivation towards considering computing the CME over the
reaction counts rather than species counts.
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1 Introduction

Realistic mathematical models of biological and chemical systems need to include stochasticity, especially
systems where single molecular events may dramatically affect the outcome of the system. When dealing
with systems with small species counts, the deterministic models fail to capture the inherent randomness
needed in the modeling of the system. A mathematical model which can be used to include stochasticity
is the Chemical Master Equation(CME). This model is a differential-difference equation (continuous in
time and discrete in the state space), which describes the probability of the system at a particular state
at a given time. The CME is used to model systems such as enzyme cascades [LP07] and gene regulatory
networks [HBS+07]. Large systems can be solved using the CME [MBBS08]. We find that the CME has a
unique solution, however the computation of the solution has the ‘curse of dimensionality’. There exists a
rich literature on methods of solving the CME, such as the Stochastic Simulation Algorithm(SSA) [Gil76]
[Gil77], Finite State Projection Algorithm (FSPA) [KM06], Wavelet approximation [JG08] and Sparse
grid methods [HHL08]. We shall describe some of these methods in more detail in the following sections.
Our focus within this paper is not to write a new solver but to see the CME in a new light. We shall
study a pre-existing formulation of the CME and highlight structure which has been overlooked before.
We shall begin with the definition of the CME, followed by the formulation for the CME with respect
to the reaction counts, instead of population counts. Once we have formulated the CME in this way, we
shall present some new results and conclude with discussion regarding possible further research.

1.1 Mathematical Background

Let us consider a system of M distinct reacting species in a solution which has fixed temperature, is
well-mixed and has fixed volume, where N independent reactions can occur. The CME that describes
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such a system is :
∂P (x; t)

∂t
=

N∑
k=1

ak(x− vk)P (x− vk; t)−
N∑
k=1

ak(x)P (x; t), (1)

where P (x; t) is the probability of being at a state x ∈ Ω ⊂ NM0 for a time t. Given a reaction Rk : Ω→ Ω,
for k ∈ {1, . . . , N}, the non negative propensity function of Rk is ak : Ω → R+ and the stoichiometric
transition vector of Rk is vk := Rk(x)− x. A more rigorous definition of ak can be found in [Gil76]. For
the purpose of this paper, the definition above is sufficient.

There is a very simple physical interpretation of the CME given in (1). The CME states that the flow of
the probability of being at a state x ∈ Ω at time t is equal to the probability of arriving at x using Rk,
given by ak(x−vk)P (x−vk), minus the probability of leaving x by Rk, given by ak(x)P (x; t). Considering
this over all possible reactions gives us (1).

Solving for P (x, t) in (1) for x ∈ Ω, involves solving (1) simultaneously over all Ω. Hence solving the CME
resolves to solving the following first order differential equation;

dP(t)
dt

= AsP(t), (2)

which is a coupled linear differential equation, where P(t) is a vector with components P (·, t). Even though
we know the solution for (2) is P(t) = eAstP(0), in many cases the systems we are interested in solving
will have |Ω| infinite and As being singular, which invoke the difficulty of solving the CME. Techniques
have been developed to deal with systems with high dimensional state spaces, two of which are FSPA and
the State Space Aggregation method. The FSPA [KM06] numerically solves (2) by truncating the state
space, making As finite dimensional and then computing eAstP(t). By truncating the state space we are
inferring that the states outside the truncation have probability zero, therefore computing P (·, t) using
the FSPA leads to an approximation of P (·, t). This can be a good assumption if we have the stationary
points inside our truncated space, or if probabilities outside the truncated space die away to zero. Another
method which deals with controlling the size state space is the State Space Aggregation method [HHL08].
In this method we aggregate the space, solve the aggregated CME and then disaggregate.

Let us consider the CME for the following example: We have a species S1, undergoing decay over time.
Let the initial population of S1 be x0, and the reaction rate at which the decay occurs be c > 0. We
denote this in the following way: S1

c−→ ∗.
Example 1. Reaction: S1

c−→ ∗, with initial population of x0 ∈ N at t = 0. For this reaction we have
a1(x) = xc, x ∈ N0. The CME for this system is given by:

dP (x0; t)
dt

= −a1(x0)P (x0; t)

= −x0cP (x0; t), t > 0
dP (x; t)
dt

= a1(x+ 1)P (x+ 1; t)− a1(x)P (x; t)

= (x+ 1)cP (x+ 1; t)− xcP (x; t), x ∈ 0, . . . , (x0 − 1), t > 0.

The analytic solution for x ∈ 0, . . . , x0 is given by,

P (x; t) =
x0!

x!(x0 − x)!
e−cxt(1− e−ct)x0−x. (3)

This particular solution is called the binomial process. The result is stated in [JG08] and [Gil77].

2 CME with Respect to Reaction Counts

The CME with respect to reaction counts was initially investigated as a method for solving systems with
multiple time scaled reactions [HR05] [VR97]. It was not considered as a method for solving general
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systems. One of the possible reasons is that the system based on reaction counts needs to be truncated in
order to be solved in practice, whereas the species based CME does not. We shall see this in detail below.
We believe however that solving the CME with respect to reaction counts is simpler than solving with
respect to species counts. This is based on a simpler structure found in the CME with respect to reaction
counts, which is not available in general for the species based CME. We shall begin by stating the CME
with respect to the reaction counts, following which we shall state the major results of this paper.

Given a system, we define the following two spaces; Ω ⊂ NM0 and Λ ⊂ NN0 , where M is the number of
species and N the number of reactions. We define V = [v1, . . . ,vN ]T ∈ MN×M to be the stoichiometric
matrix, where vi are the stoichiometric vectors defined in (1). Using the stoichiometric matrix we define
an affine map Γ : Λ→ Ω, by Γ(r) = x0 + VT r for r ∈ Λ. Furthermore, let {Γx = Γ−1(x) : x ∈ Ω} be the
set of equivalence classes defined by the mapping Γ.

By a standard application of the push forward measure, we attain;

P (x; t) =
∑
r∈Γx

P̄ (r; t). (4)

Using (1) and (4) we can derive the probability of a system being at r ∈ Λ at time t by the following
version of the CME;

∂P̄ (r; t)
∂t

=
N∑
j=1

aj(x0 + VT (r− Ij))P̄ (r− Ij ; t)−
N∑
j=1

aj(x0 + VT r)P̄ (r; t), (5)

where N is the number of reactions in the system and M is the number of species. Also aj is defined
as in (1), Ij is the unit vector in the jth coordinate and V is the stochiometric matrix of the system.
Computing the CME with respect to reaction counts given in (4), is the same as the original CME given
in (1). However we find it easier to solve (4) rather than (1). Similar to (2), we find the solution to (5)
by solving the the following linear differential equation;

dP(t)
dt

= ArP(t), (6)

where P(t) is the vector in [0, 1]|Λ| with coordinates P̄ (r, t), r ∈ Λ. In this formulation the Ar has a simpler
structure than As given in (2). The following results given for Ar cannot be applied to As for all systems.

Remark 1. If Γ is bijective, then solving the CME with respect to reaction counts is the same as solving
the original CME. We can expect Γ to be bijective when VT is invertible. If VT is rectangular or not
invertible, we can see from linear algebra that |Γx| will be infinite for all x ∈ Ω.

Theorem 2. Given a system with M species and N reactions with V as the stoichiometric matrix, if
Λ 6= ∅, then the matrix Ar, (c.f. (6)), can be arranged to be lower triangular such that the eigenvalues of
Ar are given by {

∑N
j=1 aj(x0 + VT r) : r ∈ Λ}.

Proof. For a fixed r ∈ Λ, from (5) we can deduce that P̄ (r; t) is only dependent on P̄ (r1; t) where r1 ∈ Λ
with |r1| < |r|. Here | · | is the l1 norm. Hence we can arrange the elements of P in such a way that we
will get Ar to be lower triangular. Since Ar is lower triangular, its eigenvalues are the diagonal elements.
We know from (5) that the diagonal is given by the following set, {

∑N
j=1 aj(x0 + VT r) : r ∈ Λ}.

Corollary 3. If there exist distinct r1, r2 ∈ Λ such that r1, r2 ∈ Γx for any x ∈ Ω, then Ar has non
unique eigenvalues.

Proof. If there exists an x ∈ Ω such that |Γx| ≥ 2, then for any r1, r2 ∈ Γx ⊂ Λ,
∑N
j=1 aj(x0 + VT r1) =∑N

j=1 aj(x0 + VT r2). Hence the two eigenvalues corresponding with r1 and r2 given in Theorem 2 are the
same.
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When V has lower rank, then by Corollary 3 we know that As has non-distinct eigenvalues.
Proposition 4. Given a system with M species and N reactions with stoichiometric matrix V, if Λ 6= ∅
and P̄ (·, 0) = δ0(·), then the solution for (5) is given by:

P̄ (0; t) = e−(
Pn

j=1 aj(x0))t, t > 0, (7)

and

P̄ (r; t) =
N∑
j=1

(
aj(x0 + VT (r− Ij))

∫ t

0

e−(
Pn

j=1 aj(x0+VT r))(t−s)P̄ (r− Ij ; s)ds
)
, (8)

for r ∈ Λ\{0} and t > 0.

Proof. Case 1: Let r = 0, then (5) reduces to;

∂P̄ (0; t)
∂t

=
N∑
j=1

aj(x0)P̄ (0; t).

We know this solves analytically to (7).

Case 2: Fix r ∈ Λ\0. Let g(t) :=
∑N
j=1 aj(x0 + VT (r− Ij))P̄ (r− Ij ; t) and β =

∑N
j=1 aj(x0 + VT r). Then

we can rewrite (5) as;
∂P̄ (r; t)
∂t

= g(t)− βP̄ (r; t). (9)

We take the Laplace transform of (9) with P̄ = L(P̄ ) and G = L(g);

sP̄− P̄ (r, 0) = G(s)− βP̄.

Since P̄ (r, 0) = 0 by the initial condition, P̄ (·, 0) = δ0(·),

P̄ =
1

s+ β
G(s). (10)

By taking the inverse Laplace transform we find;

P̄ (r; t) =
∫ t

0

e−β(t−s)g(s)ds.

After substituting g(t) and β, we obtain (8).

Remark 5. If we consider a FSPA type solver for Ar, we can apply the results above to show the problem
is very simple to solve. If we truncate Λ to Λ′ and solve (5), we find that the solution for P̄ (r; t), r ∈ Λ′,
is not an approximation but an analytic solution. If for some r ∈ Λ′, if the eigenvalue is zero, then we
can simply remove the row and column and solve for P̄ (r; t) using Proposition 4, after we have solved over
the rest of the domain. Note that without any zeros in the diagonal of A′r, this matrix will be negative
definite.

We can see that Proposition 4 can be used to explicitly solve (5) over any finite dimensional state space
Λ. Another way to solve (5) over Λ would be to solve (6), using the the algorithm given in [GVL96,
Theorem 11.1.3], by computing the matrix exponential for upper triangular matrix. These two methods
are analogous.
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3 Discussion

The purpose of this paper is to give motivation into the study of the CME with respect to reaction
counts. We have given results which show that when solving over the reaction counts, we can find all the
eigenvalues of Ar and also the solutions for the truncated Ar are analytic. If we do consider a FSPA
solver of (5), then it is clearly easier to solve over reaction counts rather than species counts. However
being easier to solve does not imply that the solution for (5) is close to (1). This is another important
consideration which requires further research. We need to investigate the following question: how many
r ∈ Γx do we need to solve such that

∑
r∈Γ′

x
P̄ (r; t) is a good approximation of P (x; t), for x ∈ Ω. If

we find that
∑

r∈Γ′
x
P (r; t) converges to P (x; t) quickly, then computing over the reaction counts will be

computationally advantageous. We are expecting the convergence to be dependent on t.
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