
18th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009 
http://mssanz.org.au/modsim09 

 

Reflection + XML Simplifies Development of the APSIM 
Generic PLANT Model 

Holzworth, D. 1 and N. Huth 1 

1 CSIRO Sustainable Ecosystems / Agricultural Production Systems Simulator Joint Venture (APSIM JV) 
Email: Dean.Holzworth@csiro.au  

Abstract: The Agricultural Production Systems Simulator (APSIM) is a farming systems model that 
contains many sub-models. These sub models, in turn, contain many lines of legacy code that often need 
maintenance and refactoring. One model in APSIM that has undergone considerable reworking is the generic 
PLANT model, a model capable of simulating many crop species through parameterisation. Originally 
written in FORTRAN (Robertson et al. 2002, Wang et al. 2002), this model was converted to the C language 
and later restructured into classes using C++. This evolutionary process led to a model that was difficult to 
work with.  

More recently, newer computer languages have emerged that have the ability to return, at run-time, various 
metadata about the source code to a calling piece of code.  This reflection, also called introspection, can be 
used by a model framework to make it more dynamic and able to respond to different types of models at run-
time. For example, rather than using inheritance or an interface to locate and call a timestep method of a 
model, the infrastructure can analyse the model source code, looking for ‘tags’ that provide information 
about the appropriate method to call. These tags can also be used to describe the properties and methods of a 
model, allowing the infrastructure to provide values for them automatically. This can significantly reduce the 
amount of ‘plumbing’ code that the model developers must write.  

XML is another technology that can simplify the configuration and development of a model. In the APSIM 
generic PLANT model, it is used to select the desired processes to connect together to define a crop model 
and then to specify the parameters for those processes. The hierarchical nature of XML lends itself 
particularly well to this type of model specification. The APSIM PLANT model is reduced to a library of 
plant classes that describe the various organs and processes required to simulate the growth and development 
of many crop and tree species. Some of these processes are alternatives to other processes, for example, leaf 
development can be simulated as a whole of plant process or as cohorts of leaves. The selection of which 
approach to use for a particular crop is defined in the XML configuration file for that crop. 

This paper explores our use of reflection and XML in an attempt to simplify model development. These 
techniques aren’t particularly new or novel in the software development industry, but their use in model 
development has been limited. 

Keywords: APSIM, APSIM Plant, model development, XML, reflection, documentation 

887



Holzworth and Huth, Reflection + XML Simplifies Model Development  

 

1. INTRODUCTION 

The Agricultural Production Systems Simulator (APSIM) is a farming systems model that contains 
approximately sixty science (non infrastructure) sub-models (Keating et al. 2003). These models simulate a 
range of crop, pasture and tree species as well as the below ground processes of soil water and nitrogen 
movement. They are written in a range of computer languages and different programmer formatting styles, 
due to the eighteen years of APSIM history and the technology changes that have occurred during that time. 

APSIM model developers have always had a philosophy of writing models that are decoupled from each 
other and from user interfaces. This was essential to allow swap in/out capabilities. To enable this swap 
in/out, a protocol was adopted (Moore et al. 2007). While this worked, the science code became littered with 
calls to the infrastructure to read parameters, retrieve values for input variables and provide values of 
variables to other models. In recent times, an attempt has been made to move this ‘plumbing’ code from the 
model code to the infrastructure so that it is invisible to the model developer (Holzworth et al. 2007). We’ve 
come to realize that good, clean code is essential for understanding the underlying processes, aiding 
transparency for others looking to reuse the code. 

In recent years, new software development technologies have emerged that allow models to be written with 
almost no plumbing code at all. Reflection (also called introspection) is a technique that allows a framework 
to discover, at runtime, metadata about the source code of a model (Holzworth et al. 2007; Rahman et al. 
2004). The Microsoft .NET languages (plus Java and several others) support reflection. This technology 
allows the model developer to write code very cleanly without the need for calls to an interface to get and set 
values of variables etc. Another recent development in the software development industry is the eXtensible 
Markup Language (XML), a text based, hierarchical, file format used extensively in many problem domains. 
This format can be easily read by source code and can be transformed to other, possibly non-XML, formats 
allowing new opportunities for using the data in different ways, for example, documentation. 

In parallel with these software developments, work on the APSIM generic PLANT model (Robertson et al. 
2002; Wang et al. 2002) has continued, making it capable of simulating around 30 different species of crops 
from a single code base. The software aspects of this work involved moving the code from FORTRAN to C 
to the C++ computer language with extensive refactoring to remove plumbing code and improve readability. 
It has been a continuing goal to convert PLANT to an object-oriented framework, making it simpler to adapt 
and evolve to changing requirements. On the science side, the source code of PLANT has become a library of 
process classes that can be turned on and off and parameterised. The parameterisation and class switching has 
been completely externalized to a configuration document, for example the wheat model in APSIM is simply 
a configuration document that selects and parameterises a set of classes in the PLANT model. While the end 
result of this work was an object-oriented generic PLANT model, it became very complex and largely 
unintelligible to the majority of developers and users. This paper outlines how a new PLANT model was 
developed from scratch using reflection and XML to produce a simpler, more understandable model. This 
paper suggests that XML and reflection can be combined to make model development in general much 
simpler. 

2. SMART INFRASTRUCTURE 

To support .NET development in APSIM, the infrastructure has been modified to use reflection and XML. It 
reads a model configuration document, uses reflection to locate the referenced class, creates instances of 
these classes and passes all parameter values to the created instances. Figure 1 shows the APSIM 
infrastructure reading the top level XML node of Plant. It then locates the class in the PLANT library and 
creates an instance of it, naming it Vine. For each of the XML elements that it finds nested under this 
<Plant> node (e.g. Population), it locates the correct field or property in our newly created model instance by 
looking for the appropriate [Param] tag and pushes the parameter value from the XML file to the Plant 
instance. The process is then repeated recursively for all nested classes specified in the configuration file. For 
example, when the infrastructure encounters Leaf in the configuration file, it will locate a class called Leaf 
and create an instance of it and then recursively look for Leaf parameter values. 

888



Holzworth and Huth, Reflection + XML Simplifies Model Development  

 

<Plant name="Vine"> 
  <Population>14</Population> 
  <Leaf> 
    <K>0.5</K> 

      … 

Instantiates Plant and names it Vine. 

For each parameter in configuration file: 

 Reads name and value of parameter 

 Locate parameter in source code 

 Push parameter value into the instance 
 of the model class. 

…public class Plant : Instance 
   { 
   [Param] public double Population;    
   … 

Figure 1: A diagram showing the infrastructure reading the model configuration document and pushing each 
parameter value into an instance of the model class. Nesting of classes (e.g. Leaf) is also supported. 

Configuration Document (vine.xml) Infrastructure 

Model source code 

3. USING THIS CAPABILITY IN GENERIC PLANT  

The PLANT model in APSIM uses this technology to dynamically connect processes together at run-time to 
build a crop model entirely specified from a configuration document. The PLANT model consists of many 
classes that have been designed in such a way to facilitate their swapping in and out for different crops. As an 
example, the APSIM Slurp model, an instantiation of the generic PLANT model, provides a user-defined 
sink for soil water that can be used to fill the role of a crop within a simulated system, filling the need for a 
simple surrogate of a crop in a simulation. The Slurp model configuration specifies an instance of classes 
called SimpleLeaf and SimpleRoot. The SimpleLeaf class doesn’t dynamically grow leaf; instead leaf area 
index is supplied as input from the user. Similarly, SimpleRoot doesn’t dynamically grow roots. Water uptake 
occurs through a specified extraction coefficient from the whole profile. The other crops in APSIM don’t use 
these classes as part of their configuration. They configure Leaf and Root, classes that simulate growth in a 
more dynamic way. The actual instantiation of the classes happens at runtime when the crop model is sown, 
thus allowing different sowings to instantiate different configurations of the classes. 

In addition to configuring whole organs from configuration data, the classes in PLANT have been built to 
allow processes within an organ to be swapped in and out. Figure 2 shows an excerpt from the vine 
configuration document, specifically the ReproductiveOrgan configuration. The berry filling rate 
(FillingRate) process is configured to be an instance of the PhaseLookup class. This class will use the current 
phenological phase to look up a value. It will iterate through all the nested PhaseLookupValue classes finding 
the instance corresponding to the current phenological phase and returning that instance’s value. In figure 2, 
there are two nested classes specified, EarlyBerryGrowth and LateBerryGrowth. For the former, if the 
phenological phase is between flowering and veraison, the value is itself a function of temperature. When the 
temperature is between 7oC and 22 oC, the value is interpolated between 0 and 0.00133. It plateaus at this 
value until 30 oC and then drops to zero at 35 oC. For LateBerryGrowth, another temperature function is used 
but with a different plateau. The key point to note is how easy it is to add and configure these functions. 
Several simple functions exist in PLANT to return a constant value, perform a lookup on x/y pairs and do 
interpolations on key variables. These can all be used interchangeably wherever a function is expected. 
Indeed, in the extreme case, there is a GenericFunction that can perform a simple interpolation. X and Y 
pairs are specified in the XML along with the name of a variable in the model. At runtime, the value of the 
variable is retrieved and used to perform the interpolation. This provides great flexibility to the model builder 
as different interpolation schemes can be used without modifying any source code.  

New functionality can be added to the model, using these techniques, without any preconception by the 
model developer. Figure 2 shows how a simple calculation called WaterContent was added to the 
ReproductiveOrgan class. A StageLookup class configuration was added that specifies the water content for 
different phenological stages. The sole purpose of this instance of StageLookup is to specify a reproductive 
organ water content that the user, or another model, can retrieve. No source code was added to 
ReproductiveOrgan to support this functionality. StageLookup is used in other configurations in different 
ways reinforcing the case that multiple classes can serve very different roles within the model. These    
function and lookup classes are very small and simple to write.  

889



Holzworth and Huth, Reflection + XML Simplifies Model Development  

 

Figure 2: An excerpt from the vine configuration document showing how berry filling rate is configured as a
phenological phase base lookup. Different functions are used for early and late berry growth. 

 

4. WHAT DOES IT MEAN FOR THE MODEL DEVELOPER? 

Given sufficient base functionality in the available classes in PLANT, the model developer is able to 
construct new crop models entirely from configuration documents. This assumes the classes in the PLANT 
framework are suitable for the new crop model. It is inevitable though, particularly in the early 
developmental phase that new processes and organs will need to be added to the PLANT framework. This is 
made much easier through the almost complete absence of any ‘plumbing’ code. Consider the source code 
excerpt from the ReproductiveOrgan class in Figure 3. Unlike earlier APSIM model code written in older 
languages, there are no calls to ‘get’, ‘set’ or other infrastructure interfaces which greatly simplifies the 
source code.  Inputs and parameters are tagged as such with the infrastructure using them to locate the 
declaration and supply values at the appropriate time. For example, before the infrastructure calls a method of 
the model, it will retrieve values of all inputs automatically. The model developer doesn’t know or care 
where the values come from. Doing this incurs a small runtime overhead but the result is simpler source 
code, which is our primary goal.  

An inheritance interface (BaseOrgan) is used by all model classes, but instead of being an infrastructure 
based interface (calls to read parameters, get and set variable values etc), the base organ class defines how the 
science in this class interacts with other classes in PLANT (science domain). For example, the base organ 
defines how the water and nitrogen resource arbitrator communicates with an organ. This frees the developer 
to think about science based concepts like water uptake, dry matter demand rather than solution space 
concepts like the mechanics of getting and setting variable values. Our experience has shown that this leads 
to a model that is much simpler to write and understand. 

890



Holzworth and Huth, Reflection + XML Simplifies Model Development  

 

Figure 3: The source code for ReproductiveOrgan shows how nested processes are accessed (e.g.
FillingRate). The reflection tags Input, Output, Param and Units can also be seen. For more information on
the available tags, see Holzworth et al. (2007) 

 

 

Another advantage to the developer arises from using XML as the configuration document format. XML 
lends itself particularly well to transformation to other forms. As the XML configuration documents are 
reasonably self describing, they can easily be converted to model documentation which helps the model 
developer and users alike. APSIM includes a tool that transforms the XML into HTML documentation. 
Rather than using XSLT language to perform the transformation, a simple custom tool was built so that 
graphs of the functions could be added to the HTML documentation. Figure 4 shows an excerpt from the 
ReproductiveOrgan documentation that was generated from the XML configuration document. Through 
some simple rules and the use of a charting tool, the configuration files can be auto-generated into very 
useful documentation. 

 

 

 

 

 

891



Holzworth and Huth, Reflection + XML Simplifies Model Development  

 

 

 

 

5. DISCUSSION AND CONCLUSION 

It is quite possible to use model configuration documents in a model without having to use reflection, as the 
last 30 years of practice have shown. The model would need to contain hard coded source with large switch 
or if statements to push the parameter values to the model. It would also need to know about all parameters in 
all classes. For a model the size of PLANT this quickly becomes cumbersome. Every time the model 
developer creates a new process or new parameter, the infrastructure would need to change as well. For older 
computer languages that don’t support reflection, this may be the necessity, but for modern languages that 
have reflection, model development can be made much simpler. 

It is also quite possible to have configuration documents in some other format. For example, the older 
Windows INI format could be used but they suffer from a lack of nesting of sections. This could be overcome 
by devising a hierarchical scheme for INI files that provides the required nesting. Likewise, a completely 
custom ASCII format could be developed to configure the PLANT model. In both cases though, devising a 
custom format, and the code necessary to read and transform it, would be wasted effort when a simple, 
industry standard exists that meets our requirements. 

Figure 4: The auto-generated documentation for the ReproductiveOrgan class in Figure 2. 

892



Holzworth and Huth, Reflection + XML Simplifies Model Development  

 

There are many advantages to the techniques discussed in this paper. Our goal was to simplify the model 
source code as much as possible, removing all infrastructure plumbing code and user interface specific code. 
This in turn frees the model developer to focus on the science issues of implementing the model processes. 
When this source code is then directly configured from configuration files, a much greater level of 
transparency for model users is achieved. By examining the generated documentation of the model, users can 
attain a rudimentary understanding of the processes used in a model and how they are configured. This helps 
to reduce the ‘black box’ problem. Our experience has shown that this is necessary in order for users to be 
confident that the model output makes sense and thus increase their understanding of the problem domain. 
This is, after all, the goal of any model. 

The lack of ‘plumbing’ in the model source code also facilitates model reuse in other applications. The 
relatively loosely coupled ReproductiveOrgan presented in this paper, could easily be incorporated into other 
models or applications. It is completely decoupled from the APSIM infrastructure, user interface and other 
APSIM models. It simply specifies its input requirements, the outputs that it makes available, and the 
methods that need to be called. It is true that the science works in a particular, specific to APSIM way, but so 
long as this stays relatively simple, this could be mimicked by other models. This science specification 
describes how PLANT’s resource (dry matter, water, nitrogen) arbitrator communicates with the organs. 
Considerable discussion is currently taking place around the design of these interfaces. This is a key indicator 
that the infrastructure issues have largely been solved. For an in depth analysis of a real world crop model 
(broccoli) that uses these techniques, see Huth et al. (these proceedings). 

A downside to the approach outlined in this paper, is the tendency for the model developer to be 
overwhelmed by the large number of classes, functions and processes that can be configured. It can be 
difficult to know where to start when creating a new crop model. Our recommendation is always to start with 
an existing configuration and modify that but the issue of knowing what classes are available still stands. 
Good documentation, something we’ve always struggled to find the time to do well, would help. More auto-
generated documentation from the source code might also help. It’s something that needs to be addressed in 
the near future. 

Reflection and XML are widely used in the software development industry but their adoption in the field of 
farming systems modeling has been limited. Indeed, we are not aware of any other work in this area. 
Reflection and XML configuration documents are not intrinsically tied to APSIM but instead are simple 
enough to be utilised in all .NET models and model frameworks. The benefits to be gained are considerable 
while the implementation costs of adopting them are minimal.  

6. REFERENCES 

Holzworth DP, Huth NI, DeVoil P (2007) A Framework Independent Component Design: Keeping It Simple. 
In Oxley, L. and Kulasiri, D. (eds) MODSIM 2007 International Congress on Modelling and Simulation. 
Modelling and Simulation Society of Australia and New Zealand, December 2007. 
http://www.mssanz.org.au/MODSIM07/papers/18_s56/AFrameworkIndependent_s56_Holzworth_.pdf. 

 
Huth, N., Henderson, C. and Peake, A. (2009) Exploring irrigation management of a horticultural crop using 

APSIM. In R. Braddock et al. (eds) 18th IMACS World Congress - MODSIM09 International Congress 
on Modelling and Simulation, December 2009. ISBN: 978-0-9758400-7-8. 

 
Keating BA, Carberry PS, et al. (2003) An overview of APSIM, a model designed for farming systems 

simulation. European Journal of Agronomy 18, 267-288. 
 
Moore AD, Holzworth DP, Herrmann NI, Huth NI, Robertson MJ (2007) The Common Modelling Protocol: 

A hierarchical framework for simulation of agricultural and environmental systems. Agricultural Systems 
95, 37-48. 

 
Rahman JM, Seaton SP, Cuddy SM (2004) Making frameworks more useable: using model introspection and 

metadata to develop model processing tools. Environmental Modelling and Software 19, 275-284. 
 
Robertson MJ, Carberry PS, et al. (2002) Simulation of growth and development of diverse legume species 

in APSIM. Australian Journal of Agricultural Research 53, 429-446. 
 
Wang E, Robertson MJ, et al. (2002) Development of a generic crop model template in the cropping system 

model APSIM. European Journal of Agronomy 18, 121-140. 

893




