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Abstract: Most nowadays scheduling algorithms for grids are based on the assumption that the application 
(job) execution time is known before job run-time. This assumption significantly simplifies job-resource 
matchmaking, although it has proven to be inapplicable for most real-world applications. On the other hand, 
there exists a group of applications for which execution progress can be monitored at run-time. Often, when a 
correlation between job execution progress and total job execution time exists, progress information can 
serve as a good basis for the prediction of the remaining execution time.  

Another important issue in the domain of distributed computing is scheduling of jobs composed of tasks with 
input dependencies, whereby some tasks require inputs generated by other tasks. Since the overhead due to 
input dependencies is limited, this type of dependencies forms a potential for execution optimization by 
means of intelligent scheduling of dependent tasks on distributed resources.   

In this article a detailed performance evaluation and optimization is provided for an adaptive scheduling 
algorithm for grids that was proposed earlier. The algorithm operates on jobs with input inter-dependencies, 
whose sub-tasks are organized into a DAG (Directed Acyclic Graph) and for which no information of total 
execution time is available. The idea behind the approach is that parallel tasks (parent tasks), generating 
input for the same underlying set of tasks (dependent tasks), should finish more or less simultaneously. Since 
the  dependent tasks can only be executed after all the required inputs are available, the longest parent task is 
assigned to the fastest available resource, while shorter tasks can be assigned to slower resources, as long as 
it does not prolong the execution time of the parent set as a whole. The latter creates a possibility for other 
tasks requiring fast processing to be executed on faster machines. At first, tasks are assigned randomly. Later, 
the algorithm reacts on dynamic changes in resource status and variations in task execution time predictions 
by possibly rescheduling parallel tasks.  

The algorithm's performance was evaluated using workload originating from an existing modeling and virtual 
experimentation tool for environmental systems (Tornado). Results have shown that significant system 
overhead is introduced, in terms of additional computational and network load due to the extended 
checkpointing and migration mechanisms. However, this overhead is compensated by more effective 
processing of parallel sub-tasks, which are now occupying only resources they strictly need in order not to 
delay the execution of the job as a whole. In this paper we measure the overhead introduced by the algorithm 
on network and computational resources and compare it to the overhead of a traditional static approach. It is 
clear that the effectiveness of the adaptive approach strongly depends on the degree of parallelism of sub-
tasks and on their overall execution time heterogeneity. The boundaries for both parameters are studied. 
Furthermore, the performance of the algorithm can be improved by postponing migration in cases where the 
benefit of rescheduling is expected to be sufficiently low. Definition of the boundary for the migration 
postponement is also addressed.   

Keywords: Grid computing, job dependencies, performance optimization, adaptive scheduling, execution 
time estimation 
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1. INTRODUCTION 

Grids are highly distributed computational environments composed of heterogeneous and de-centrally 
managed resources that are used for parallel execution of application (job) tasks. To make efficient use of 
these complex systems, a well thought through scheduling approach is essential. There are, however, several 
issues that make the quest for an appropriate scheduling solution far from trivial: grids are dynamic 
environments, with constantly changing resource load and availability; exact execution times of jobs running 
on a grid are often unknown in advance; possible dependencies between tasks composing a job require a 
certain execution sequence, etc. Most of the currently existing scheduling algorithms for grids (Chang, 2007; 
Rahman, 2007) make a simplifying assumption that grid and/or workload parameters are known a priori. The 
latter, however, significantly reduces the practical applicability of the proposed methods.  

Fortunately, in many applications there exists a correlation between job progress and total job execution time. 
This means that the remaining task execution time can be estimated when the task progress on a particular 
resource and the current execution time can be monitored. Therefore, in our previous work we proposed an 
adaptive scheduling algorithm that reassigns (reschedules) tasks at run-time, based on dynamically collected 
information on task execution progress and on the status of grid resources. The algorithm schedules relatively 
efficiently tasks with input dependencies, which is a type of dependencies, whereby a task can require inputs 
generated by other tasks in order to proceed with its execution. Particular to input dependencies is that they 
do not require extensive message passing between communicating tasks (a single data transfer normally 
suffices), which provides possibilities for execution optimization by means of intelligent assignment of 
dependent tasks to widely distributed computational resources within grids.   

The main disadvantage of the algorithm proposed earlier is that it introduces considerable overhead in terms 
of computational delay and network load due to frequent rescheduling. However, this overhead is 
compensated by faster processing of dependent tasks. In this paper we closely observe the algorithm’s 
performance and compare it to the performance of a static approach. Afterwards, we observe how the 
overhead can be reduced by avoiding redundant rescheduling.  

The remainder of this paper is organized as follows: Section 2 summarizes related work; in Section 3 the 
adaptive approach for scheduling of tasks with interdependencies is discussed; in Section 4 we take a close 
look at the performance of the adaptive approach; and finally, Section 5 concludes the paper.   

2. RELATED WORK 

Since knowledge of the exact task execution time offers many possibilities for efficient task resource 
matchmaking, various research efforts were dedicated to the design of accurate task run-time prediction 
mechanisms. For instance, in (Nassif, 2005) the use of historical information is proposed for this purpose. 
Each task is supposed to be provided with a set of descriptive attributes (e.g. application name, requirements) 
that identify similarities between different tasks. The execution time of a new task is determined from run-
times of similar tasks executed on the same host. (Caniou, 2004) introduces another history-based approach, 
called Historical Trace Manager (HTM), which is designed particularly for GridRPC-based middleware. The 
HTM takes into account the time-shared server model and application properties (e.g. size of input and output 
data, the number of operations in each task) to predict the duration of a task on a particular resource and its 
impact on the execution of other tasks. The disadvantage of both above-mentioned approaches is that they 
require a significant amount of information on system performance and the executed applications. However, 
in dynamically changing grid environments often running complex applications with sophisticated control 
flows, providing such information is a challenging task. On the other hand, our approach does not require any 
a priori information, since it can dynamically modify its decisions based on application and system 
performance updates collected at run time.  

        DAGs are a commonly utilized structure for the representation of tasks with interdependencies. In 
(Malewicz, 2006) a DAG-based scheduling tool was developed that assigns task priorities to maximize the 
number of eligible tasks in each step of the computation. An eligible task is a task whose parents have 
already been processed and which is ready to execute in the next scheduling round. Opposite to this 
approach, our adaptive algorithm tries to reduce the execution time of a job as a whole, which can eventually 
be achieved by slowing down the execution of individual tasks. Yet another DAG-based approach is 
introduced in (Aggarwal, 2005): tasks are organized into a DAG-structure according to the constraints 
imposed by the end-user. A Generic Algorithm based scheduler optimizes resource utilization while 
satisfying conflicting user goals.  
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3. ADAPTIVE SCHEDULING ALGORITHM  

In our previous work (Chtepen, 2008) an adaptive scheduling approach was introduced, whose functionality 
is shortly summarized in this section. The proposed approach operates on tasks with input interdependencies, 
for which the total execution time is unknown in advance but gradually improving execution time estimates 
can be computed at run-time. The objective of the algorithm is to speed up the execution of a job as a whole, 
at the cost of partially slower execution of individual tasks.  

The algorithm operates on tasks organized into a DAG 
structure, as shown in Figure 1, where circles indicate 
tasks belonging to the same job and edges represent input 
dependencies. The considered DAG graph represents a job 
dependency structure often occurring in real-world 
application. As shown on the figure, we assume a single 
initial and a single final task. The initial (parent) task can 
have an arbitrary number of dependents (e.g. simulations 
with varying parameter values), outputs of which can be 
combined or split to serve as inputs for dependents on the 
next level of the graph. The considered DAG can have an 
arbitrary height, i.e. an arbitrary number of levels with 
dependent tasks. At the final level, all intermediate results 
are combined for input into the final task, where the final 
job output is calculated.  

The idea behind the algorithm is to schedule parallel tasks 
having the same dependents (the so-called parent set), in 
such a way that they finish more or less simultaneously. In 
Figure 1, the set {1,2} is an example of a parent set generating inputs for dependents (5 and 6). Since tasks 
within a parent set often have varying length and dependents require inputs from the whole parent set to 
proceed with their execution, it is beneficial to assign short tasks within the parent set to slower resources. 
Faster resources that become available can in turn be occupied by longer tasks requiring faster execution. It is 
important to notice that a parent set can contain multiple parent subsets ({1,2} is a subset of {1,2,3}), which 
execution is optimized prior to the execution optimization of the incorporating parent set. The operation of 
the adaptive algorithm can be subdivided into the following three steps (see Figure 2): 

Step 1 (dynamic collection of information): run-time 
information on resources status, on the progress of 
running jobs and on the location of all initial tasks is 
collected. The latter is particularly important in heavily 
utilized grids with a limited number of computational 
resources. Since initial tasks do not have input 
dependencies, they can be started immediately, occupying 
to a large extent the available resources and delaying the 
execution of dependent tasks. Therefore, it should be 
possible to rapidly locate and interrupt / reschedule initial 
tasks when a dependent task is ready to run.  

Step 2 (rescheduling of parent sets): this step is 
executed if some fully scheduled parent sets (with no idle 
tasks) are running on the grid. Tasks within such parent 
sets are reassigned as a reaction on newly available 
information on task progress and possibly a changed grid 
status (e.g. availability of new computational resources, 
resource failure, variations in resource load). Tasks are rescheduled in the scope of their parent sets. The 
algorithm processes parent sets in the order of increasing number of still running tasks in a set. This 
scheduling order ensures that almost completed parent sets are scheduled to the fastest available resources.  

For each task within the next parent set (PS) to reschedule, the algorithm calculates a new estimation of the 
task execution time: E = 100% / P × T, where P is the percentage of the workload already completed and T is 
the elapsed execution time. Afterwards, for the task j∈PS with the longest estimated execution time (Emax) 
the algorithm defines a set R of available resources that are faster than the current resource where j is 
running. The speed of a resource is determined as the ratio between its MIPSr (Million Instructions Per 
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Figure 1. Example of a job composed of tasks 
with input dependencies, organized into a DAG 

structure. 
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Figure 2. Flow of the operation phases of the 
proposed adaptive scheduling algorithm. 
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Figure 3. Examples of Tornado simulation experiments following decreasing (Orbal), increasing (Lux) 
and oscillating (Bamberg and Galindo_OL) execution time prediction models. 

Second) and the number of tasks it is currently executing (initial tasks not counted). The algorithm tries to 
reschedule j to the fastest resource r∈R and here the following scenarios can occur: 

• R is empty because j is already running on the fastest available resource: no rescheduling within PS can 
take place and the algorithm proceeds with the second shortest parent set. 

• R is not empty but j can not be reassigned to r without delaying the execution of other parent sets: the 
algorithm deletes r from R and tries to reschedule j to the second, third, etc. fastest resources.  

• j is reassigned to r, and the new maximum estimated execution time (Emax
new) over all task in PS now 

belongs to another task i: the reassignment procedure is repeated again for the task i. 

• j is assigned to r, but it still has the longest estimated execution time (Emax
new) over all tasks in PS: the 

current limit on the PS execution time reduction is reached. The algorithm proceeds by linking other 
tasks i ∈ PS , i ≠ j to the available resources in such a way that the difference (Emax

new – Ei) is minimized 
and Ei < Emax

new. This implies that the remaining tasks from PS are reassigned to the slowest possible 
resources that keep the maximum estimated execution time within PS below Emax

new.  This procedure, 
however, is not applied to tasks i ∈ PS that are part of another parent set PSs ∈ PS, because it would 
delay the execution of the shorter PSs set. 

Each time a dependent task is rescheduled to a particular resource, the initial tasks running on that resource 
can be interrupted and reassigned to the slowest available free resources.  

Step 3 (scheduling of new/failed tasks): in this part of the algorithm, ready-to-execute tasks (i.e. tasks with 
either no parents or all parents already executed) are assigned to the resources that are still available after the 
rescheduling phase. If resource availability allows, the algorithm attempts to process tasks belonging to the 
same parent set in a single iteration. Tasks are processed in the order of their arrival into the system (longest 
waiting task first), however partially processed parent sets always get the highest priority. Task-resource 
matchmaking proceeds to a large extent similar to Step 2, except that idle tasks within parent sets are 
assigned to the resources taking into account their rough initial length estimation. For failed tasks, the 
predicted length is eventually reduced with the already performed and checkpointed computations.  

4. PERFORMANCE EVALUATION 

The performance of the proposed adaptive scheduling algorithm is evaluated using the workload parameters 
collected from the existing modeling and virtual experimentation tool for environmental systems, named 
Tornado (Claeys, 2006). In Tornado, two types of input dependencies typically occur:  

• Parameter sweep: sub-experiments (Tornado equivalent for a task) are run on the same model but with 
varying parameters, which results in similar execution times.  

• Model sweep: sub-experiments are run on different models with strongly varying execution times. 

In this section we evaluate the performance of the adaptive approach for both above-mentioned types of task 
interdependencies. We observe to what extent computational overhead and network load are influenced by 
execution time heterogeneity and by the degree of parallelism between different sub-experiments.  

Furthermore, characteristic to Tornado jobs is that their execution time is extremely difficult to predict in 
advance, because of the dynamics of the enviromental processes that are being modeled. However, for 
experiments with a predefined simulation horizon, the execution progress can easily be calculated at run-
time, using the equation E = 100% / P × T, where P = Ts

c / Ts. Ts
c stands for the current simulated time and Ts 
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Figure 5. Job execution time distributions for HighVariation, MediumVariation and LowVariation models. 

is the total simulated time. Based on the monitored progress we try to predict at each measurement point the 
total execution time of a Tornado sub-experiment. This prediction can strongly vary over time, which leads to 
the notion of an execution time prediction model. This model shows the evolution of the predicted job length 
over time. In our previous work (Chtepen, 2008), all prediction models were subdivided into 3 categories: 
decreasing, with execution time estimations gradually decreasing over time; increasing, with execution time 
estimations gradually increasing over time; and oscillating, with execution time predictions oscillating over 
time (see Figure 3). When a preliminary comparison between the adaptive scheduling algorithm and a simple 
static approach that schedules arriving jobs randomly was performed, the results suggested that the advantage 
of the dynamic method, compared to the static one, is most significant for execution time estimates following 
the increasing model. This can be explained by the fact that in the latter case we have to deal with relatively 
long tasks, on which overhead due to occasional 
checkpointing and migration has a rather small 
impact. Therefore, in what follows we consider only 
the increasing model, which will provide the upper 
boundary on the adaptive algorithm performance. 

For our validation experiments we have modeled the 
grid environment shown in Figure 4. It consists of 4 
widely distributed computational sites, aggregating 
all together 128 computational resources (CR’s), 
connected within the sites by Local Area Networks 
(LANs) with start topology. Furthermore, the grid 
contains a number of general services: a user 
interface (UI), through which tasks are submitted into 
the system; a scheduler (GSched) responsible for 
task-resource matchmaking; an information service 
(IS), which collects task and resource status 
information required by the GSched; and a 
checkpoint server (CS) where checkpointing data is 
made persistent. It is assumed that all the CR’s as 
well as the general services are fully stable. That 
means that no failures can occur and that load on each 
resource remains constant over time. In compliance with real-world grid deployments, CR’s in our model 
possess different computational power that varies from 100 to 4000 MIPS. Finally, the Wide Area Network 
(WAN), connecting the sites, has a bandwidth of 1 GBit/s and a latency varying from 3 to 10 ms, while the 
intersite LAN-links have a bandwidth of 1 Gbit/s and a latency of 1ms.    

The assumed job submission model simulates the behavior of typical Tornado users. Jobs are arriving into 
the system in batches of varying length with a frequency that follows a daily cycle. The latter implies that 

most of the jobs (about 80%) arrive during day-time. Three different models were considered to represent 
variations in task executions times: HighVariation, MediumVariation and LowVariation. Task lengths 
derived according to these models are shown in Figure 5. To simplify the comparison between different 
models it is assumed that the size of inputs, outputs and checkpoints amounts 1 MB for all tasks; and a task 
checkpointing delay varies from 100 ms to 1 s, depending on the actual execution time. The limit for the 
increase in job execution time is initialized to 200 % of the initially estimated job length. The algorithm 
performance is compared for varying degree of parallelism of sub-tasks, whereby we consider parent sets 

Figure 4. Example grid architecture: UI (User 
Interface), GSched (Grid Scheduler), IS (Information 
Service), CS (Checkpoint Server), WAN (Wide Area 

Network), LAN (Local Area Network). 
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Figure 7. Network load of the dynamic and the static approaches for the increasing job execution time 
model. 
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Figure 6. Proportion of useful workload processed by the dynamic and the static approaches for increasing 
job execution time model. 

with 2, 5, 10 and 20 parallel tasks within DAG graphs consisting of 3 levels. The grid described above was 
observed during 24 hours of simulated time. 

Figure 6 compares the efficiency of the proposed adaptive approach to a random static approach, in terms of 
the amount of useful workload processed. As “useful workload” we consider tasks belonging to successfully 

executed final jobs. The results show hat the lower the parallelism and the length variation between executing 
tasks, the smaller the difference between both approaches. The use of the dynamic algorithm is the most 
advantageous when scheduling jobs with a high task length variation and a somewhat intermediate degree of 
parallelism. This can be explained by the fact that when only a few tasks with similar lengths are executed in 
parallel, the gain due to intelligent scheduling is rather limited. On the other hand, when execution times of 
large number of parallel tasks have to be balanced, the balancing procedure becomes lengthy and the 
difficulty of finding a sufficient amount of suitable resources arises. Worth noticing is that in optimal 
circumstances the dynamic algorithm can outperform the static one by as much as 60%.   

Figure 7 shows the network load introduced by the dynamic and the static algorithms. The dynamic approach 

introduces the most network overhead due to task reassignments (up to 20% more than the static algorithm) 
when trying to calibrate the execution times of a large number of parallel tasks.  

Obviously, the exact network overhead, as well as the amount of useful workload processed, strongly 
depends on the cost of a migration, i.e. complexity and size of checkpoints, size of input and output data. 
Sometimes the performance of the adaptive approach can be improved by reducing the number of migrations 
performed. Therefore, we modified the dynamic algorithm to perform migration of dependents only when 
rescheduling reduces the predicted execution time with a certain minimum percentage (MP). Figure 8 gives 
an overview of the achieved results when comparing the original solution with the solution where MP is 
initialized with 20, 50 and 70 %. We observe only the case with parent sets containing 5 parallel tasks, since 
in other cases the algorithm performs more or less similar. From the results can be concluded that for the 
given scenario the optimal performance (about 10% improvement) of the adaptive algorithm is achieved 
when migrations resulting in relatively small execution time improvements (less than 20%) are skipped. 
However, omissions of migrations leading to higher execution time improvements are not longer 
compensated by reduction in migration overhead. Therefore, the system performance starts to degrade. Since 
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Figure 8. Fraction of useful workload processed by the dynamic approach with varying MP-values. 

the optimal frequency of migration is strongly system and application dependent, the latter can best be 
determined and calibrated based on historical information on previous application runs.  

5. CONCLUSIONS 

Scheduling of dependent tasks in distributed and dynamic grids is an important issue, especially because the 
exact job execution times can hardly be determined in advance. Therefore, in our previous work an adaptive 
scheduling approach was introduced that reschedules tasks at run-time based on monitoring of grid status and 
task execution progress. In this paper, a detailed performance evaluation of the algorithm was performed. 
Where in our previous work we compare the adaptive and static approaches in terms of their average job 
turn-around times and the number of jobs processed, this paper mainly focuses on computational and network 
overhead of the adaptive approach under different circumstances. Furthermore, we propose a remedy for 
overzealous migration, which is the main cause of the overhead of the adaptive approach. An improved 
version of the algorithm skips task rescheduling when it leads to an insufficient performance improvement. 
Simulation results have shown that this method can lead to significant performance gain, however depending 
on the migration costs of each particular application.   
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