
18th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009
http://mssanz.org.au/modsim09

Two and Three-Dimensional Image Deconvolution on
Graphics Hardware

Luke Domanski, Pascal Vallotton and Dadong Wang

CSIRO Mathematical and Information Sciences, Biotech Imaging
Email: luke.domanski@csiro.au

Abstract: The process of image formation in an
optical microscope or similar imaging device
results in a distortion of the true object image due
to diffraction effects and out-of-focus blurring.
This distortion can greatly limit the resolution of
the imaging device, particularly in the case of 3D
microscopy where the axial resolution is impeded
by the contribution of out-of-focus signal from an
extended area of the object outside a recorded focal
plane.

Fortunately the image formation process can be
modelled as a convolution of the original object
with the impulse response of the device, that is, the
image of a point energy source. As such, an
approximation of the original object image can be
derived through an inversion of this model – a
deconvolution. Unfortunately the inclusion of
random noise in the image recording process
makes direct methods of inverting this model less
than ideal as they are prone to amplification of
noise. A class of popular approaches is to use iterative methods which try to account for the noise and
progress towards an acceptable approximation of the real image. These methods are often computationally
intensive, requiring a reapplication of the image formation model to successive estimates of the real image. In
addition, biological and medical research organisations are collecting 3D image data on an increasingly large
scale, and there is a demand to process this data in a timely manner.

In this paper we investigate the use of graphics processing units (GPUs) to accelerate the execution of one
such iterative algorithm, the Richardson-Lucy (RL) algorithm. Modern GPUs are highly parallel commodity
processors containing hundreds of cores and capable of executing thousands of threads concurrently. GPUs
can be utilised to accelerate a wide variety of compute intensive algorithms. As their programmability has
improved over the past decade, significant effort has been invested in performing general purpose computing
on GPUs (GPGPU). Until recently GPGPU algorithms had to be implemented using a combination of
graphics application programming interfaces (APIs, e.g. OpenGL, DirectX) and shader languages, which
impose a graphics focused conceptual view of the underlying hardware and hide a number of important
hardware capabilities from the programmer. The advent of GPGPU programming languages such as CUDA,
Brook, and OpenCL have made a number of these capabilities more accessible, paving the way for more
efficient algorithms, and have seen the use GPGPU approaches in new application areas.

We compare performance results for a number of 3D Richardson-Lucy implementations on both the CPU
and GPU, showing that our best GPU implementation, using Fourier space convolutions, significantly
outperforms our best CPU implementation, which uses a publicly available and highly optimised Fast Fourier
Transform (FFT) library.

Keywords: graphics processing units (GPU), parallel processing, image restoration, deconvolution,
microscopy, Fast Fourier Transform

Richardson-Lucy(O, PSFF, N) return E {
E = O
for N iterations
 /* apply imaging model to estimate */
 EF = gpu_fft(E)
 BF = gpu_multiply(EF, PSFF)
 B = gpu_ifft(BF)

 /* captured image divided by blurred estimate */
 R = gpu_divide(O, B)

 /* calculate correction vector */
 RF = gpu_fft(R)
 CF = gpu_multiply(RF, PSF*F)
 C = gpu_ifft(CF)

 /* apply correction vector */
 E = gpu_multiply(E, C)
end
}

Figure 1: Frequency based GPU Richardson-Lucy algorithm.
Variables O, E, B, R, C and PSF = original image, current

estimate, blurred estimate, ratio, correction and psf respectively
(stored in GPU memory). * denotes complex conjugate.

1010

Domanski et al., Two and Three-Dimensional Image Deconvolution on Graphics Hardware

1. INTRODUCTION

Blurring effects inherent to the process of image formation limit both the contrast and resolution of a
microscope, restricting the accuracy and scale at which we can quantify and examine microscopic structures.
In 3D light microscopy the blurring is predominately caused by diffraction and the contribution of out-of-
focus light from regions of the object out of the focal plane. Optical aberrations, intensified by using the
microscope outside of its design conditions (Gibson & Lanni, 1991), further degrade image quality.

The blurring caused during image formation can be characterised by the impulse response of the imaging
device. The impulse response is the image of a point source object captured by the imaging device and is
often referred to as the point spread function (PSF). With this information a linear model of the imaging
system can be defined as a convolution of the true object f(x) with the PSF p(x,ξ) as follows.

ξξξ dxpfxg),()()(= (1)

When p(x,ξ)=pi(x-ξ) the PSF is assumed to be spatially invariant (SI). In other words, the image of a point
source object is identical regardless of where it is positioned in the sample. This is often not the case,
particularly for 3D light microscopy (Gibson & Lanni, 1991), and the PSF may change based on axial and
lateral location. In these cases a spatially variant (SV) description of the PSF provides a more accurate model
of the imaging system, and p becomes a function of spatial location p(x,ξ)=pv(ξ,x-ξ) giving the intensity of
light at image point x produced by a point light source at point ξ in object space (Preza & Conchello, 2003).
Given these models of image formation the process of finding the unknown true object f(x) from the observed
or captured image g(x) becomes one of inverting equation 1, that is, deconvolving the captured image using a
suitable expression of the PSF.

It is well known from the Convolution Theorem for Fourier transforms that a convolution in the spatial
domain is equivalent to an element-wise multiplication in the Fourier domain. Hence, for the spatially
invariant model, equation 1 becomes

)()()(ωωω PFG = , (2)

where capital letters denote the Fourier transform of the associated lower case functions. The desired
deconvolution can then be performed using a straight-forward division in the Fourier domain.

)()()(ωωω PGF = . (3)

The true image is obtained by performing an inverse Fourier transform on the result. Handling the SV model
is not as straight-forward, and will be discussed later.

When dealing with discrete images the integral operators above are replaced by the appropriate summation
operators, and the Fourier transforms can be performed using the Discrete Fourier Transform (DFT) with the
PSF padded to the size of the real image. Fast algorithms known collectively as Fast Fourier Transforms are
available for computing the DFT, and provide an efficient means of performing both convolution and
deconvolution using a computer. Such an approach to inverting the imaging model rarely performs well on
real images though. The process of capturing an image using a digital camera introduces random noise n due
to statically fluctuations in the measurement device. In practice the imaging model therefore becomes

 +=)(),()()(xndxpfxg ξξξ . (4)

Because the noise is random and both the noise and true image are unknown, there is no certain method of
separating the noise contribution in the final image from the contribution of the true image. Applying a
deconvolution as described above in this situation results in an amplification of the noise (Lucy, 1994) which
can render the output “deprived of any physical meaning” (Bertero & Boccacci, 2002).

A common approach for addressing the inversion of equation 4 is to use iterative algorithms that account for
the statistical properties of noise, or regularise its effects in some way, while converging towards an optimal
solution. A popular algorithm for achieving this is the Richardson-Lucy algorithm (Richardson, 1972; Lucy,
1974) which provides the Maximum Likelihood estimator for f(x) when the noise is modeled using Poisson
statistics.

The algorithm is derived from an expression of the inversion problem using Bayes’ Theorem as described in
(Richardson, 1972) and (Lucy, 1974), and is defined in the discrete case by

1011

Domanski et al., Two and Three-Dimensional Image Deconvolution on Graphics Hardware

=+
x r

rr xp
xg

xg
ff),(

)(

)(
)()(1 ξξξ , where (5)

=
ξ

ξξ),()()(xpfxg rr (6)

It starts with f0 as an estimate of f and proceeds to re-evaluate the estimate as shown for a given number of
iterations or until some stopping criterion is reached. Notice that the algorithm does not actually invert the
imaging model directly, instead, it: a) applies the imaging model to the estimate fr producing a blurred
estimate gr, b) creates a correction factor by convolving the ratio of the observed image g to blurred estimate
gr by the “transpose” of the PSF (note the domain of summation), d) multiplies the current estimate fr by the
correction to get a new estimate.

Unfortunately this algorithm can become computationally intensive when a large number of iterations are
required. From equations 5 and 6 we can see that each iteration of the algorithm requires the calculation of
two convolutions plus a complete element-wise division and multiplication of the image. In this paper we
investigate the use of graphics processing units (GPUs) to accelerate the Richardson-Lucy algorithm.

2. BACKGROUND AND RELATED WORK

2.1. Graphics Processing Unit

We will focus on CUDA and NVIDIA GPUs in our discussions (NVIDIA, 2008). A GPU consists of a
number of multiprocessors (MPs) each with a set of 32 bit registers, private on-chip parallel shared memory,
and managed read-only constant and texture memory caches. Each multiprocessor contains eight scalar
processor cores (SPs) that share the register and memory resources of their MP, and execute the same
instruction simultaneously at each instruction cycle. The MP schedules, switches, and executes threads in
fixed groups of 32 threads called a warp. The same instruction is executed for all threads of the warp before
proceeding to the next instruction or executing a different warp. Threads have general read-write access to
device global memory attached to the graphics board, but this is not cached and incurs significant overhead
compared with accessing the on-chip shared memory. Threads are indexed over a problem domain using a
hierarchy of grids and blocks. A block is an N-Dimensional (N=1..3) array of threads and a grid is a KD
(K=1,2) array of blocks. A block is assigned to a single MP for its lifetime and its threads can synchronise
their execution and share data via MP shared memory. The number of blocks that can run on an MP at one
time is limited by the register and shared memory resources required per block.

Significant performance benefits exist when a half-warp (first or second 16 threads of warp) accesses both
global and shared memory in a particular pattern. When the 16 threads access consecutive elements of global
memory and the first thread’s access is aligned to particular segments of memory, the accesses are coalesced
into a single memory transfer instead of 16 serialised transfers. Coalesced accesses on newer GPU hardware
are slightly more relaxed, however, optimal results are still achieved using the rules above. Shared memory
allows parallel accesses by threads of a half-warp that access different shared memory banks. Memory is
partitioned across 16 banks in 32bit words such that the ath word in memory is assigned to bank b=a mod 16.
Accesses are serialised on the order of the minimal overlapping set of bank accesses (NVIDIA, 2008).

2.2. Convolutions and Discrete Fourier Transforms on the GPU

Spatial convolution is a fairly straight-forward task to perform on graphics hardware. Some graphics
hardware provides operations for 2D convolution by small filters and Hopf and Ertl (1999) have shown how
to apply these to the construction of 3D convolutions. A number of convolution approaches have been
implemented using graphics APIs and shaders (Bjorke, 2004; James & O’Rorke, 2004; Viola, 2002;
Hadwiger et al., 2001). A common approach is based on shifting and accumulating an image into a buffer
using a single kernel weighting for each image, while others directly gather image and kernel values within a
pixel shader program using texture accesses and produce the pixel output value by a standard multiply-
summation of the values. Since the advent of CUDA, efficient algorithms for 2D convolution have been
described (Podlozhnyuk, 2007), however, they gain much of their performance by using separable filters. We
make no assumptions on separability and hence use a conventional gather-multiply-sum approach on a per
pixel basis within the CUDA kernel.

FFTs have been implemented on the GPU using graphics APIs and shaders (Moreland and Angel et al., 2003;
Govindaraju et al., 2006; Spitzer, 2003), however, most results were only comparable with the performance

1012

Domanski et al., Two and Three-Dimensional Image Deconvolution on Graphics Hardware

of optimised CPU FFT libraries such as FFTW and MKL. With the release of CUDA came NVidia’s CUFFT
1.1 library which significantly outperformed previous GPU based FFT implementations as well as optimised
CPU libraries. Since then marked improvements have been made in the performance of FFT algorithms on
the GPU (Govindaraju et al., 2008; Volkov and Kazian, 2008; Nukada et al. 2008). In this work we utilise
GPU FFT algorithms as “black-box” libraries and will not concern ourselves with their internal details.

2.3. Parallel Richardson-Lucy

A common approach to implementing the Richardson-Lucy algorithm in parallel on a cluster of PCs (Boden
et al., 1996; Shearer et al., 2001) is based on the sectioned method of Trussell and Hunt (1978a). In such an
approach the image can be segmented into a number of abutting sub-tiles and the RL algorithm is performed
on each tile individually. A guard-band of half the PSF diameter is included around each tile to accommodate
for the additional information required during convolution at tile boundaries. On completion the guard-bands
are discarded and the tiles are combined to form the final deconvolved image.

Since the processing of each tile is performed in isolation, the tiles can easily be distributed to multiple PCs
or processors and processed in parallel. The sectioned method also provides a convenient way of
incorporating a SV model in a piece-wise manner (Trussell and Hunt, 1978b). By processing each tile using a
spatially invariant model, but using a different PSF for each tile base its spatial location, spatially variability
is achieved at the tile level. Tile size can be adjusted to accommodate greater or less extents of variability,
thus minimising deconvolution artefacts between adjacent tiles. We present one such approach for the GPU.

An alternate or complementary approach is to parallelise the FFT algorithm used to facilitate frequency
domain convolutions. Extensive effort has been applied to implementing GPU accelerated FFTs as discussed
above. This type of acceleration could be used for both sectioned methods (FFT on individual tiles) and non-
sectioned methods (FFT on whole image). Fung & Mann (2008) provide brief results for a non-sectioned
GPU accelerated RL algorithm using CUFFT and custom kernels. They show a 9.8-21x speedup over the RL
implementation in Matlab for a single test case, but do not provide discussions of the algorithm. We discuss
such an implementation in more detail.

3. IMPLEMENTATION ON THE GPU

We examine two implementations of the Richardson-Lucy algorithm on the GPU, one that incorporates
frequency domain convolutions and one that uses spatial domain convolutions.

3.1. FFT based approach

For the frequency domain approach we use a publically available FFT library for the GPU to perform the
Fourier Transforms and implement other parts of the algorithm using customised GPU kernels. The main
iterative control loop of the algorithm is implemented on the CPU and the loop body consists entirely of calls
to the FFT library and our GPU kernels (figure 1). A major limiting factor in GPU computing is the transfer
of data from CPU host memory to GPU device memory via the PCI Express bus. Implementing all algorithm
operations on the GPU rather than having to read values back and forth to the CPU between each convolution
not only provides increased parallelism over the CPU for performing these operations, but allows us to keep
host-to-device transfers at a minimum.

The two convolutions required in the RL iteration are performed using a combination of FFT library calls and
a customised kernel for the element-wise multiplication. While the input image data is stored as real valued
numbers, the FFT will perform a real-to-complex transform, which results in complex output. The kernel for
element-wise multiplication must therefore perform complex multiplication. Since the image array and the
padded PSF array are of the same size, and share the same storage pattern in memory (e.g. row-major), the
operation can be performed on the data as a 1D vector, regardless of the image dimensions. Such an ordering
of values facilitates a simpler construction of the thread block/grid, and more efficient memory access
patterns (§2.1). The other major operations, i.e. the original image to blurred estimate ratio and the
application of correction vector to the estimate, are performed element-wise on real values using custom
written division and multiplication kernels respectively.

Almost all input and output variables of the FFT and custom kernel functions are of the order of the original
image size, and must be stored in GPU device memory upon function invocation. Modern high-end GPUs
have between 756MB and 4GB of device memory, while a typical 1024x1024x16 real valued image
consumes 64MB (1MB = 1024 kB). Storing multiple variables of this size can be costly in memory usage. To
conserve space, operations will be performed in-place where appropriate, so that the same piece of memory

1013

Domanski et al., Two and Three-Dimensional Image Deconvolution on Graphics Hardware

can be used to store both the input and output. The most suitable variables for in-place calculation or memory
reuse are those whose values will not be required after they have been used as input to an operation. The RL
algorithm requires up to four variables to remain persistent within and between algorithm iterations: the
original image (O in figure 1), the current estimate (E), and the Fourier transforms of the PSF and its
complex conjugate (PSFF and PSF*F). All other variables are candidates for reuse. Examining figure 1 we see
that none of these remaining variables are used more than once after they are calculated, nor are any of them
used simultaneously as input to a GPU function. Given that both FFTs and element-wise operations can be
performed in place, we require only one segment of memory to represent all of these variables. In practice we
use two memory segments, a and b, to avoid unnecessary padding as discussed bellow. Variables share these
segments as such: EF -> BF -> B -> R -> RF -> CF -> &b, and C -> &a.

Although a DFT performed on N=N1xN2x…xNd real value samples (Nk = size of kth dimension) produces N
complex values, almost half of these samples occur redundantly as the conjugate of other samples. A
common practice is to discard the redundant coefficients and store only N1xN2x…x(Nd/2+1) complex values.
Since complex values require twice the space of real values, the memory required to store the complex FFT
output will be slightly larger than that required to store the real valued image. When performing in-place FFT
calculations one must allow for this extra space by padding the real valued image along the last dimension
within the larger array. The length of an array dimension including padding is known as pitch. For the FFT
library we utilise, the padding occurs at the end of rows. In a row-major storage scheme this raises difficulties
when performing element-wise operations between real valued images stored in a standard manner and ones
of the same “size” stored using padding. This is because associated image samples are not at the same
memory offsets from their array base addresses. To handle this situation one can either pad all real valued
images so they share a common storage arrangement, or create GPU kernels that handle pitched access. We
have implemented kernels that account for pitch to avoid unnecessary padding, however, we may experiment
with padding in the future as it could provide more efficient access patterns in the kernel (§2.1).

3.2. Spatial domain approach

For the spatial domain convolution approach we use a single kernel that implements the entire RL algorithm
on the GPU before returning. The implementation is based on the conventional sectioned method for
parallelisation of the RL algorithm, where we map the computations for a given tile to a single
multiprocessor of the GPU. All threads processing a tile can then take advantage of on-chip shared memory
and synchronisation barriers to cooperatively process the tile without writing back to global device memory.

As discussed in section 2.3, the RL algorithm can be performed by breaking the image into small tiles (with
guard-bands) and running the algorithm individually on each. Parallelism can be achieved easily by
processing multiple tiles simultaneously. This approach works particularly well on distributed memory
clusters, as a single tile can be assigned to each processor and no communication is required between the
processors (tiles). The properties that make this approach attractive for a distributed memory cluster also
make it attractive for GPU implementation. As previously discussed (§2.1), threads that run on a single GPU
MP can synchronise their execution and communicate values to one another via this shared memory. The
shared memory of one multiprocessor can not be accessed by other multiprocessors, nor are there any
convenient mechanisms to synchronise threads on different multiprocessors. Communication and
synchronisation between multiprocessors is therefore inconvenient and costly, requiring data writes to global
device memory and termination of a kernel to achieve global synchronisation. In addition, the shared
memory assigned to a thread is unlikely to remain persistent across a kernel invocation. Like a single
processor of a cluster, a single GPU multiprocessor can therefore process a tile quickly and efficiently using
its own local resources, while communication with other processors is far more costly.

Each tile of the image will therefore be allocated to a single thread block that will run on a multiprocessor.
The block of threads will be indexed over the tile’s local spatial domain as a 2D or 3D box, and each thread
will handle the processing of the associated tile pixel. The two ND convolutions in the kernel will be
performed using standard N-level nested for loops with a multiply-add in the inner loop. All other
calculations can be performed using a few arithmetic operations.

During the convolutions to obtain the blurred estimate and correction vector the threads will require values of
the current estimate and ratio that were calculated by other threads in the block. As such, a barrier
synchronisation should be called prior to each convolution to avoid read-before-write access problems. These
commonly read and written values, along with the original image, will be stored in shared memory to
facilitate efficient access. Reading and writing these values to global memory over a large number of RL
iterations would otherwise incur a significant performance penalty. The commonly accessed PSF data
remains constant throughout the algorithm and can be placed in read-only constant memory. Constant

1014

Domanski et al., Two and Three-Dimensional Image Deconvolution on Graphics Hardware

memory constitutes part of device global memory, however, constant memory accesses are automatically
cached on the multiprocessor in a 16KB cache. When all threads of a warp access the same cached element
of constant memory it is as fast as accessing a register (NVIDIA, 2008). This will be the case for PSF
accesses within the convolutions as they are dictated directly by the parameters of the for loop, and the loops
will be performed in lock step by the threads of a warp. Values calculated for other array variables, such as
the blurred estimate and correction vector, remain local to each thread and can be stored in thread registers.
This represents the data arrays implicitly across registers and provides a performance advantage compared to
memory access. It also avoids the need to consider in-place operations and variable reuse as the CUDA
compiler will reuse register resources appropriately.

Performance is not the only issue dictating our selection of variable storage above. Recall that the RL
algorithm requires a number of image-sized variables to be maintained at any one time. The shared memory
resident on a multiprocessor is 16kB shared between all blocks currently occupying the multiprocessor. For
each tile “image” in the sectioned method we require both the tile itself and a guard band half the width of
the PSF around the entire tile. Taking a 16x16 pixel tile and a 17x17 PSF results in approximately 4kB for
real valued data, meaning we can store a maximum of 3 or 4 tiles in shared memory. In our implementation
the shared memory requirement can be restricted to one tile image per block using the storage options above,
because the same space can be used to store the blurred estimate and ratio without conflict. When considering
3D images, however, the shared memory resource soon become inadequate. For an 8x8x8 tile and 9x9x9 PSF
we hit the 16kB barrier for a tile and the kernel invocation begins to fail. Point spread functions more than
twice this size are not uncommon in 3D widefield microscopy. Even with smaller 3D tiles or PSFs it is
unlikely that more than one block can share the multiprocessor at one time. This reduces the thread
scheduler’s ability to hide stalls and latencies by swapping in threads of another block. When PSFs reach a
size that will exceed the shared memory resources using our implementation (31x31x1), we utilise kernels
that use global memory only.

A maximum of 512 threads can be assigned to a block and it is generally recommended that each block
contain somewhere between 128-256 threads (NVIDIA, 2008). We use a 16x16x1 block of threads for both
2D and 3D problems. To handle the much larger tile image each thread will perform the calculations for
multiple pixels, by shifting the block of threads over the tile image domain. The threads will be shifted by the
dimensions of the block, and for each location neighbouring threads will handle neighbouring pixels. This is
more efficient than neighbouring threads making strided memory accesses and shifting the block by one pixel
at a time due to the memory access versus performance benefits discussed earlier (§2.1).

4. RESULTS AND DISCUSSIONS

The algorithms described above were implemented in
CUDA on an NVidia GTX 260 graphics card with 240
stream processors and 896MB of global memory
(RAM). The host computer had a 2.49GHz Xeon
Quad-Core processor running 32bit Windows XP,
CUDA environment 2.1, CUFFT 2.1 for the GPU
FFTs, and FFTW 3.1 (Frigo & Johnson, 2005) for the
CPU FFTs. We compared our GPU algorithms against
non-sectioned frequency and spatial domain
implementations on the host. The CPU algorithms
were single threaded except where FFTW used multi-
threading. The code for the CPU algorithms where
almost identical to their equivalent GPU algorithms,
e.g. they were created by taking the GPU code and
changing it slightly to run on the CPU and with
FFTW. GPU versions include additional code to copy
values from the host to the GPU, move values from
device global memory to MP shared memory, and to
iterate the 2D block of threads over the image tile
instead of a single thread (CPU) in the spatial domain
approach.

Figure 2 shows the results for 2D and 3D images.
Although the sectioned algorithm maps well to the
GPU processor architecture, the computational

Figure 2: Results for 2D (top) and 3D (bottom) Richardson-
Lucy on a 512x512(x16) floating point image using 20

iterations

3D Richardson-Lucy, 512x512x16 image, 20 iterations

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

3x3x3 15x15x15 27x27x16 39x39x16 51x51x16 63x63x16

PSF size

T
im

e
(m

s
)

GPU FFT CPU FFT

2D Richardson-Lucy 512x512, 20 iterations

10

100

1000

10000

100000

1000000

3x3x1 15x15x1 27x27x1 39x39x1 51x51x1 63x63x1

PSF size

T
im

e
 (m

s
)

CPU FFT GPU FFT GPU SPATIAL CPU SPATIAL

1015

Domanski et al., Two and Three-Dimensional Image Deconvolution on Graphics Hardware

complexity O(pxnxmxo) of a 2D spatial convolution is prohibitive (p=number of pixels, nxmxo=PSF size).
We have excluded results for the 3D spatial domain approach due to its poor performance in 2D. Both the
GPU and CPU non-sectioned frequency based approaches perform well, with the GPU version providing
approximately 8.5x and 4.2x speedup for 2D and 3D images respectively. We have noted (§2.3) that an
advantage of using sectioned methods is the straightforward integration of SV-PSF models. We also
mentioned that frequency based deconvolution could be used in conjunction with a sectioned decomposition
of the problem, and we will be experimenting with this in the future to take advantage of both methods.

5. CONCLUSION

We have presented and compared a number of parallel implementations of the Richardson-Lucy
deconvolution algorithm on the GPU and CPU. We took two main approaches: one that applies frequency
based convolution and utilises a CPU control loop with a combination of existing GPU FFT library calls and
custom written kernels to parallelise individual algorithm operations, and one that applies spatial domain
convolutions and performs the entire algorithm in a single GPU kernel. Results show that the non-sectioned
FFT based algorithm is the fastest and outperforms a similar implementation using the accelerated CPU FFT
library FFTW (4.2-8.5x speedup). The sectioned spatial domain approach is slower, but allows
straightforward integration of spatially variant PSFs. Future work will involve implementing and testing a
sectioned method that utilises frequency domain convolutions.

ACKNOWLEDGMENTS

This work was conducted under the Computation and Simulation Sciences Platform and Computational Imaging and Visualisation
project within CSIRO. Thanks go to Yulia Arzhaeva and anonymous reviewers for reviewing this paper and providing useful comments.

REFERENCES

Bertero, M. & Boccacci, P. (2002), Introduction to Inverse Problems in Imaging, IOP Publishing.
Bjorke, K. (2004), High-Quality Filtering 'GPU Gems', Addison-Wesley Professional.
Boden, A. F.; Redding, D.; Hanisch, R. J. & Mo, J. (1996), 'Massively parallel spatially variant maximum-likelihood restoration of

Hubble Space Telescope imagery', J. Opt. Soc. Am. A 13(7), 1537-1545.
Frigo, M. & Johnson, S. G. (2005), 'The Design and Implementation of FFTW3', Proceedings of the IEEE 93(2), 216-231.
Fung, J. & Mann, S. (2008), Using graphics devices in reverse: GPU-based Image Processing and Computer Vision, in 'Proceedings of

the 2008 IEEE International Conference on Multimedia and Expo', pp. 9-12.
Gibson, S. F. & Lanni, F. (1991), 'Experimental test of an analytical model of aberration in an oil-immersion objective lens used in

three-dimensional light microscopy', J. Opt. Soc. Am. A 8(10), 1601-1613.
Govindaraju, N. K.; Larsen, S.; Gray, J. & Manocha, D. (2006), A memory model for scientific algorithms on graphics processors, in

'SC '06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing', ACM, New York, NY, USA, pp. 89.
Govindaraju, N. K.; Lloyd, B.; Dotsenko, Y.; Smith, B. & Manferdelli, J. (2008), High performance discrete Fourier transforms on

graphics processors, in 'SC '08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing', pp. 1-12.
Hadwiger, M.; Theußl, T.; Hauser, H. & Gröller, E. (2001), Hardware-accelerated highquality reconstruction on PC hardware, in 'In

Proceedings of the Vision Modeling and Visualization Conference 2001'.
Hopf, M. & Ertl, T. (1999), Accelerating 3D convolution using graphics hardware, in 'Visualization '99. Proceedings', pp. 471-564.
James, G. & O'Rorke, J. (2004), Real-Time Glow 'GPU Gems', Addison-Wesley Professional.
Lucy, L. B. (1974), 'An iterative technique for the rectification of observed distributions', The Astronomical Journal 79(6), 745-754.
Lucy, L. B. (1994), 'Astronomical Inverse Problems', Reviews in Modern Astronomy 7, 31-50.
Moreland, K. & Angel, E. (2003), The FFT on a GPU, in 'HWWS '03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

conference on Graphics hardware', Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, pp. 112-119.
Nukada, A.; Ogata, Y.; Endo, T. & Matsuoka, S. (2008), Bandwidth intensive 3-D FFT kernel for GPUs using CUDA, in 'SC '08:

Proceedings of the 2008 ACM/IEEE conference on Supercomputing', IEEE Press, Piscataway, NJ, USA, pp. 1-11.
Podlozhnyuk, V. (2007), Image Convolution with CUDA, 'NVIDIA CUDA SDK Whitepapers'.
Preza, C. & Conchello, J.-A. (2003), Image estimation accounting for point-spread function depth variation in three-dimensional

fluorescence microscopy, in 'Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing X,
Proceedings of the SPIE', SPIE, , pp. 135-142.

Richardson, W. H. (1972), 'Bayesian-Based Iterative Method of Image Restoration', J. Opt. Soc. Am. 62(1), 55.
Shearer, A.; Gorman, G.; O'Doherty, T.; van der Putten, W. J.; McCarthy, P. & Jelen, L. (2001), Parallel image restoration with spatially

variant point spread function: description and first clinical results, in 'Medical Imaging 2001: Image Processing, Proceedings of
SPIE', SPIE , pp. 787-795.

Spitzer, J. (2003), 'Implementing a GPU-Efficient FFT', SIGGRAPH '03 Course: Interactive Geometric & Scientific Computations with
Graphics Hardware.

Trussell, H. & Hunt, B. (1978), 'Sectioned methods for image restoration', Acoustics, Speech, and Signal Processing, IEEE Transactions
on 26(2), 157-164. (a)

Trussell, H. & Hunt, B. (1978), 'Image restoration of space-variant blurs by sectioned methods', Acoustics, Speech, and Signal
Processing, IEEE Transactions on 26(6), 608-609. (b)

Viola, I. (2002), Applications of Hardware Accelerated Filtering, in 'Proceedings of the sixth Central European Seminar on Computer
Graphics'.

Volkov, V. & Kazian, B. (2008), 'Fitting FFT onto thre G80 Architecture', UC Berkeley CS258 project report,
http://www.cs.berkeley.edu/~kubitron/courses/cs258-S08/projects/reports/project6_report.pdf, retrieved on 01/21/2008.

NVIDIA (2008), 'NVIDIA CUDA Compute Unified Device Architecture Programming Guide', NVIDIA.

1016

