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Abstract: Automated image analysis allows drug companies to use High Content Screening (HCS) to 
measure subtle but important changes in fluorescently labeled cells, both rapidly and accurately. Researchers 
using HCS imaging systems generate thousands of images from which they measure millions of parameters. 
Some images can be very “dense”, with hundreds of cells and complicated cell morphology. It may take 
several hours or even days to process the images generated from a single experiment which may be 
unacceptable for the workflows in laboratories. The large image datasets and fast turnaround requirement has 
made the efficient batch processing of the massive amount of images a challenging task. 

With the enormous progress in computing power, computers with multi-core CPUs are now becoming 
standard. The multi-core shift presents unprecedented opportunities for researchers to deal with large datasets 
with acceptable computing performance. Unfortunately, having a dual core CPU does not speedup one’s 
application automatically. In fact, most applications use just a single core and see no speed improvements 
when run on a multi-core machine. It is still a challenge to develop parallel algorithms that address the issues 
of task concurrency and data parallelism, and that actually take advantage of those multiple processors. In 
this paper, some efforts have been made to develop a multi-core based high performance solution to speedup 
the batch processing for micro-well-plate-based HCS. 

The proposed solution employs an automatic parallelization engine which automatically dispatches the batch 
processing tasks. The engine automatically detects the number of processors available on the computer on 
which our High Content Analysis (HCA) software runs, and then creates equal number of work threads to 
process images in parallel. Therefore, the solution can automatically scale to additional cores and future 
multi-core processors. Loop parallelization mechanism has been implemented to assign different images to 
different processors so that multiple images are processed at the same time. Upon completion of image 
processing on a processor, a new image will be automatically assigned to the processor. This process 
continues until all images are processed. For individual images, the processing is sequential and highly data 
dependent. This one-image-per-processor protocol can simplify the parallelization for data dependent 
computation problems and minimize the development effort in migrating sequential image analysis 
algorithms to a parallel form. Flow control is employed in the parallel batch processing to coordinate the 
processors’ access to shared resources such as database and Graphical User Interface (GUI) components. At 
the end of individual image processing, all features extracted from the image are piped into a structured 
database for more sophisticated data analysis. To improve the database operation performance, some 
database manipulations, such as multiple data records insertion, have been optimized to maximize the batch 
processing throughput. To verify the proposed solution, a full plate of images, with 96 wells and 6 images per 
well, have been screened. The experimental results are validated and evaluated by comparing the 
performance of the proposed approach with the conventional batch processing. With the proposed approach 
on a quad-core machine, the batch processing time for neuron body detection has been reduced to 38% of the 
original, and 46% for neurite analysis. The results show that the proposed solution can significantly increase 
the throughput of batch processing, improve the workflow in HCS laboratories, and make a difference in 
terms of cost and quality in drug development. The proposed solution can also be used in other data and 
compute-intensive applications. 
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1. INTRODUCTION 

HCA is emerging as one of the fastest growing sectors in drug discovery and development. It represents the 
convergence between cell-based assays, high-resolution imaging, and advanced image processing and 
analysis (Liszewski, 2008). HCA systems achieve high throughput by rapidly capturing and processing the 
images of each well from entire micro-well plates. Each well in these plates contains cells which have been 
labeled to detect changes in morphology produced by some interaction, such as addition of a candidate drug 
compound or gene knockout experiments. The ideal image processing time should be within the same time 
frame as the image capturing. However, the image processing time may be much longer than industry’s 
expectations even on a high-end computer. Therefore, high throughput image processing becomes a 
challenging task due to the data intensive computing and the fast turnaround required. 

High Performance Computing (HPC) comes from parallelism, fast-dense circuitry, and packaging technology 
(Bell and Gray, 2001). Over the last decade, several research studies have been conducted in the application 
of HPC to image processing (e.g. Kikinis et al., 1998; Beynon et al., 2001; Cambazoglu et al, 2007; Rao et 
al., 2007). Most of this research focuses on the usage of HPC infrastructure or distributed processing in an 
application driven and research environment. The solutions presented in these studies are based on 
supercomputers and computer clusters. In general, the parallel image analysis algorithms have not been 
sufficiently developed and investigated in a HPC context (Rao et al., 2007). As most of HCA systems are not 
based on supercomputing facilities, studies on high performance HCA solutions based on multi-core 
computers are more practical, and have potential to make a difference in terms of cost and quality in drug 
discovery. 

With the low-cost commercial HPC components becoming more common such as multi-core CPUs and 
GPGPUs (General-Purpose computation on Graphics Processing Units), nearly every computer on the market 
has a processor of at least two cores. Multi-core processors offer opportunities for tremendous speed 
improvement. However, a dual-core processor does not double a computer’s performance. This is because 
few applications take full advantage of this new technology and see performance gains when run on a multi-
core computer. The many-core shift has triggered some efforts towards developing parallel image analysis 
algorithms that take advantage of these powerful processors to achieve fast execution. Trease et al introduced 
a high-performance hybrid multi-core processing framework for processing videos and images (Trease et al., 
2008). Hartley et al illustrated a cooperative parallelization approach when multiple CPU sockets, multiple 
GPUs and multiple cluster nodes coexist (Hartley et al., 2008). Literature reviews have revealed that few 
cases have been reported in the past that explore the multicore-based HCA systems for drug discovery. In this 
paper, we will present an enabling solution to show how to make the most of one’s multi-core computer to 
achieve high performance in high throughput image processing in HCS. 

The rest of the paper is organized as follows: Section 2 introduces the data and computation intensive 
problem in HCA. In Section 3, we present the proposed high performance solutions focusing on its structure 
and implementation. The experimental results are demonstrated in Section 4, followed by discussions on the 
limitations and conditions of the proposed solution and conclusions. 

2. CHALLENGE IN HIGH CONTENT IMAGE ANALYSIS 

Researchers attempt to make sense of massive amount of image data through HCS. For example, to identify 
compounds effect on neurite outgrowth, several micro-well-plate experiments need to be carried out. 
Eventually, hundreds of thousands of microscope images are generated. Well- and even cell-based features 
are extracted from the images using HCA software packages. As some dense images may have over 1000 
cells with complicated cell structures, processing massive amounts of such images in a timely manner 
becomes difficult. This section will use neurite outgrowth analysis as an example to provide some 
background information on the challenge. 

2.1. Large Image Datasets 

When screening for neurite outgrowth, multiple plates of images may be produced. Each micro-well plate 
can have 384 wells, and 12 images may be sampled from each well. This will produce 4608 images from 
each plate. If 5 plates of images are generated, there will be 23040 images to be processed. If each image has 
three channels (RGB), with one channel showing the labeled nuclei, one showing the labeled neurons and 
neurites, and one showing additional information such as labeled proteins in some sub-cellular 
compartments, the number of images to be processed will be 69120. A typical image has a dimension of 1280 
x 1280 pixels. It turns out that the HCS for neurite outgrowth analysis is a data intensive computation 
process. 
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2.2. Compute-Intensive Analysis 

In neurite analysis, some images may be very “dense”, containing over 1000 neurons. As shown in Figure 1, 
many neurons may be clumped together, and some neurons may have complicated neurite structures. This 
will increase the complexity of analysis. From Figure 1, one can see that many neurite branches overlap. 
Generating neurite branch-level features and assigning the correct neurites to the corresponding neurons 
becomes a challenging task. 

 

To analyse neurite outgrowth, the following measurements are required: 

• Cell based measurements. The cell-based measurement includes 34 parameters such as cell area and 
perimeter, maximum and mean intensity, total neurite length, max neurite length, max and mean branch 
layer, number of branch points, number of roots, number of segments, number of extremities, neurite field 
area, neurite area, max and mean intensity of neurite etc. 

• Image-wide summary statistics. This includes the number of cells in the image, total and average neurite 
length, total and average number of segments, average longest neurite from a cell, total and average 
number of roots, total and average number of extreme neurite, total and average number of branch points, 
average branching layers etc. 

• Well-based summary for each plate. The plate summary is comprised of normalized features for each well. 
All features extracted from the images sampled from the same well are averaged to produce the well-
based normalized statistics. 

 The above image analysis demands considerable computation. Therefore, batch processing thousands of 
images is a computation intensive task, taking hours even days for a single experiment. The following section 
will address how to speedup the batch processing with multi-core based high performance image computing.  

3. HIGH PERFROMANCE IMAGE COMPUTING 

Multi-core computers have a CPU with multiple cores combining two or more independent processors into a 
single package composed of a single integrated circuit (IC). However, disposing of two processors does not 
speedup one’s application automatically. According to Amdahl's law (Lewis et al., 1992), the amount of 
performance gain from using a multi-core processor depends on the problem being solved and the algorithms 
used, as well as how they are implemented in software. Most application software packages rely on only a 
single core and see very limited speed improvements when run on a multi-core machine. This is because they 

Figure 1. A typical dense image with many “clumped” neurons and overlapped neurite structures. 
Left image acquired with IN Cell Analyzer 3000 shows a high degree of neurite branching complexity. 

Images courtesy of Marjo Simonen, Novartis Institutes for BioMedical Research. Right image displays the 
segmented neurons and neurites using CSIRO HCA-Vision software package. 
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have not been designed to take advantage of the available parallelism. In this section, a multi-core based high 
performance solution for HCA will be addressed. It can enable the conventional HCA software to process 
images in parallel to achieve significant performance gain. 

3.1. Sequential Neurite Analysis Procedure for a Single Image 

As shown in Figure 2, the sequential neurite analysis involves three steps: (1) neuron body detection, (2) 
neurite detection, and (3) neurite analysis. 

The neuron body detection aims at identifying and marking the neuron bodies. This includes smoothing the 
raw image to distribute the intensity more evenly within the neuron bodies; background correction to remove 
global trends in the background intensity; suppressing small structures such as neurites; intensity 
thresholding to detect neuron bodies; detecting nuclei to be used as masks to split touching neuron bodies; 
filtering neuron bodies when mixed cell types exist or applying certain cell selection criteria; producing 
neuron body detection label image and cell based measurements. 

The neurite detection aims at detecting neurite structures (Sun et al., 2006). The detection procedure includes 
image smoothing to remove noise within the image; linear feature detection to segment neurite structures; 
removing small objects which are not of interest; closing gaps between detected neurite endpoints; and 
generating neurite skeleton image. 

The neurite analysis is to trace neurites and to associate neurites with the corresponding neurons. The tracing 
consists of debarbing small neurites; thickening neuron bodies to connect neighboring neurites which would 
otherwise be disconnected from the neuron bodies and be removed as orphan neurites; removing small 
neurite trees which are not of interest; neurite tracing to generate tree statistics such as branching layers, 
primary, secondary and tertiary layer structures; and producing all tree analysis results. 

Upon completion of neurite analysis for an image, all measurements are piped into a structured database for 
further investigation. The whole procedure, from loading the input image to saving results in the database, is 
highly sequential. In the processing sequence, the input image for each processing step is the result image of 
its previous step; and the result image of the process step is the input image of the next processing step. The 
following section will discuss how to speedup this sequential processing.     

 

Figure 2. Sequential procedure of neurite analysis for a single image 

3.2. Flowchart of Automatic Parallel Batch Processing 

When batch processing neurite images, the sequential procedure outlined in Section 3.1 is repeated until all 
images have been processed. As the neurite analysis is highly data dependent, it is not an easy matter to 
parallelize the processing for each image across multi-core processors. However, if one image is assigned to 
one processor at a time, multiple images are assigned to multi-cores; the parallelization problem is 
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significantly simplified. Figure 3 uses a 4-core computer as an example to illustrate the flowchart of the 
proposed automated parallel batch processing. 

 

Figure 3. Flowchart of the Proposed Parallel batch processing 

To implement the automatic parallelization, Microsoft .Net Parallel Extension is employed. It is a managed 
programming model for data parallelism, task parallelism, and coordination on parallel hardware unified by a 
job scheduler (Microsoft Parallel Computing Developer Center website, 2009). The parallel extension 
enables software developers to build multi-core capable applications using existing code and compilers. It 
provides library based support for introducing concurrency into applications. Task Parallel Library (TPL) 
provides imperative data and task parallelism; Coordinate Data Structure (CDS) contains lightweight and 
scalable thread-safe data structures and synchronization primitives, providing support for work coordination 
and managing shared state. The job scheduler is a robust, efficient, and scalable engine designed to use co-
operative scheduling, and work-stealing algorithms to achieve fast, efficient, and maximum CPU utilization.      

The Parallel Extension has a task manager that, by default, uses one worker thread per processor. Each 
worker thread has its own local task queue. Each worker usually just pushes new tasks onto its own queue 
and pops work whenever a task is done. To scale well on multiple processors, work-stealing techniques are 
applied to dynamically adapt and distribute work items over the worker threads (Blumofe et al., 1994). When 
a worker’s local queue is empty, it looks for work itself and tries to "steal" work from the queues of other 
workers (Microsoft Technology Blogs: Parallel Programming with .Net, 2009). This procedure continues 
until all images are processed. With the parallelized batch processing, individual images are assigned to 
different processors automatically. Figure 3 shows the image assignment, data management, and the batch 
processing loops. Individual images are processed on different processors in parallel. The time spent in 
processing an image on individual processors depends on the complexity of individual images. For each 
image, the analysis results are piped into the database. As multi-processors can not access the database at the 
same time, flow control is incorporated in the parallel processing. When a processor is accessing the 
database, a “lock” is obtained and released when the database operation is completed. To minimize the wait 
time, the database operation is optimized to reduce the number of locks. This is addressed in the following 
section. 

3.3. Optimization of Database Operations 

When parallelizing the batch processing, we identified that the database manipulation represented a 
bottleneck. This is because multiple threads cannot access the same database at the same time. This can be 
resolved by applying a “lock” mechanism. Another issue is the optimization of database operations. From 
Section 2.2, we can see that some images have over 1000 neurons. At the end of the processing of each 
image, all cell-based measurements are grouped into cell-based records to be saved into the database. Each 
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record has 34 fields. Inserting cell-based records individually is time consuming. We have conducted some 
experiments on different computers to optimize the database operation performance. The computers include 
two high end computers, Dell T7400 with 4-cores and 4GB RAM, and Dell Xeon computer with 4 processors 
and 8GB RAM. The experimental results show that inserting different numbers of cell based records using 
one insert statement takes different amounts of time. The database inserting time is optimal for the two high 
end computers when saving about 20 records per insert statement. This is due to the fact that database 
connection, sending and parsing a query takes 5 - 7 times of the actual data insertion, depending on the row 
size. 

4. EXPERIMENTS 

We conducted experiments to evaluate the performance of the parallel batch processing on a high end 
computer with 4 Intel® Xeon™ 3.2Ghz processors and 8GB of RAM. Both neuron body detection and 
neurite analysis were tested for a 96-well plate of images with 6 images per well, altogether, 396 images. 
These images have a dimension of 1280 x 1280, and two channels, the first being the neuron body and 
neurite channel, and the other, the nucleus channel. 

The test was conducted three times for both sequential and parallel processing. With the proposed parallel 
batch processing, significant performance improvement was achieved. Overall, the execution time of the 
parallel batch processing has been reduced to 38% of the original sequential batch processing for neuron 
body detection, and 46% for neurite analysis. Figure 4 

 shows the performance comparison of the sequential and parallel batch processing for neuron body detection 
and neurite analysis, respectively. The time difference among three different executions for parallel and 
sequential batch processing may be caused by other OS tasks running on the computer. 

Figure 5 illustrates the CPU usage comparison between the sequential and parallel batch processing for 
neurite analysis. When batch processing images in sequential mode, the average CPU usage is about 25% of 
its full execution power, however, 100% usage is achieved with the proposed multi-core based parallel batch 
processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5. CPU usage charts. Left – CPU usage with sequential batch processing approach; Right – CPU 
usage with the proposed multi-core based parallel batch processing. 
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Figure 4. Execution time comparison of sequential and parallel batch processing for neuron body detection 
(left) and neurite analysis (right) 
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5. DISCUSSION AND CONCLUSIONS 

In this paper, we have presented a multi-core based batch processing solution which can significantly 
improve performance in HCS applications. The solution can automatically scale to additional cores and 
future multi-core processors. By identifying the bottleneck of the batch processing and implementing a 
parallel image analysis procedure, we have established a solid and efficient HCS platform. The experimental 
results show considerable speedup with our proposed solution, compared to the conventional sequential 
approach. The increased throughput allows biologists to conduct large scale high content screening 
experiments with massive datasets and within a reduced time frame. 

The multi-core based solution has some limitations and conditions. First of all, all image processing routines 
have to be made thread safe. No global or static variables can be used in the routines, which depend only on 
the arguments passed in. No logical and data dependence is allowed among different work threads running on 
different cores. A “Lock” mechanism shall be applied when accessing shared resources such as file I/O, GUI 
components and databases. The amount of speedup achieved depends on how many cores are available, but is 
not strictly proportional to the number of cores.  

The proposed solution can be applied to other data and compute-intensive applications as well. This can 
bring high performance to a single desktop computer and has the potential to make significant difference in 
the cost and quality of scientific computations and simulations. 
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