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Abstract: We present a nonparametric method to forecast a seasonal time series, and propose
four dynamic updating methods to improve point forecast accuracy. Our forecasting and dynamic
updating methods are data-driven and computationally fast, and they are thus feasible to be applied
in practice. We will demonstrate the effectiveness of these methods using monthly El Niño time
series from 1950 to 2008 (http://www.cpc.noaa.gov/data/indices/sstoi.indices).

Let {Zw, w ∈ [0,∞)} be a seasonal univariate time series which has been observed at N equispaced
time. Aneiros-Pérez & Vieu (2008) assume that N can be written as N = np, where n is the number
of samples and p is dimensionality. To clarify this, in the El Niño time series from 1950 to 2008, we
have N = 708, n = 59, p = 12. The observed time series {Z1, · · · , Z708} can thus be divided into 59
successive paths of length 12 in the following setting: yt = {Zw, w ∈ (p(t−1), pt]}, for t = 1, · · · , 59.
The problem is to forecast future processes, denoted as yn+h,h>0, from the observed data.

To solve this problem, we apply a nonparametric method known as principal component analysis
(PCA) to decompose a complete (12×59) data matrix (Y = [y1, · · · ,y59]) into a number of principal
components and their associated principal component scores. That is,

Y = µ̂+ φ̂
′
1β̂1 + · · ·+ φ̂′Kβ̂K + ε̂

where µ̂ = [µ̂1, · · · , µ̂12]′ is the pointwise mean vector; φ̂1, · · · , φ̂K ∈ RK (φ̂k = [φ1,k, · · · , φ12,k])
are estimated principal components; β̂1, · · · , β̂K (β̂k = [β1,k, · · · , β59,k]′) are uncorrelated principal
component scores satisfying

∑K
k=1 β̂

2
k <∞, for k = 1, · · · ,K; ε̂ is assumed to be a zero-mean 12×59

residual matrix; and K < 12 is the optimal number of components.

Since β̂1, · · · , β̂K are uncorrelated, we can forecast them using a univariate time series (TS) method,
like exponential smoothing (Hyndman et al., 2008). Conditioning on the observed data (I) and
fixed principal components (Φ = φ1, · · · ,φK), and the forecasted curves are given as

ŷn+h|n = E(yn+h|I,Φ) = µ̂+ φ̂
′
1β̂1,n+h|n + · · ·+ φ̂′K β̂K,n+h|n, (1)

where β̂k,n+h|n, k = 1, · · · ,K are the forecasted principal component scores.

An interesting problem arises when N 6= np, which is an assumption made in Aneiros-Pérez &
Vieu (2008). In other words, there are partially observed data in the final year. This motivates
us to develop four dynamic updating methods, not only to update our point forecasts, but also to
eliminate the assumption in Aneiros-Pérez & Vieu (2008).

Four dynamic updating methods are called the block moving (BM), ordinary least squares (OLS),
penalized least squares (PLS), and ridge regression (RR). The BM approach rearranges the observed
data matrix to form a complete data matrix by sacrificing some observations in the first year, thus
(1) can still be applied. The OLS method considers the partially observed data in the final year as
responses, and use them to regress against the corresponding principal components, but it fails to
consider historical data. The PLS method effectively combines the advantages of both TS and OLS
methods, while the RR method is a well-known shrinkage method for solving ill-posed problems.

Keywords: El Niño time series, penalized least squares, principal component regression.
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1 Introduction

Predicting time series of future values is of prime interest in statistics. Regardless of the kind of
statistical modeling used, an important parameter that has to be chosen is the number of past values
to use to construct a prediction method. The fewer the number of past predictors, the less flexible
the model will be. This well-known phenomenon is particularly troublesome in nonparametric
statistics for which the asymptotic behavior of the estimates is exponentially decaying with the
number of past values, which are incorporated in the model.

One way to overcome the problem of incorporating a large number of past values into the statistical
model is to use functional ideas. The idea is to divide the observed seasonal time series into a sample
of trajectories, and to construct a single past (continuous) trajectory rather than many single past
(discrete) values. We are interested in predicting a single continuous curve rather than 12 discrete
data points in a year.

Recent development in functional time series forecasting include the functional autoregressive of
order 1 (Bosq 2000), and functional kernel regression (Aneiros-Pérez & Vieu 2008), and functional
principal component regression (Hyndman & Ullah 2007, Hyndman & Booth 2008). However, to
our knowledge, there is little has been done to address the dynamic updating problem when the final
curve is partially observed. The contribution of this paper is to propose four dynamic updating
methods in a multivariate setting, although the methods can easily be extended to a functional
framework using a nonparametric smoothing technique.

This paper is organized as follows: data set is described in Section 2, Section 3 portrays the
forecasting methods, while Section 4 introduces our four dynamic updating methods. In Section 5,
we compare the point forecast accuracy with several existing methods. Conclusions are presented
in Section 6.

2 Data set
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(a) A univariate time series display.
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(b) A functional time series display.

Figure 1: Exploratory plots of the El Niño data set from Jan 1950 to Dec 2008 measured by moored buoys
in the region defined by the coordinate 0− 10◦ South and 90− 80◦ West.

We consider the monthly El Niño indices from Jan, 1950 to Dec, 2008, available online at
http://www.cpc.noaa.gov/data/indices/sstoi.indices. These El Niño indices are measured by moored
buoys in the “Niño region” defined by the coordinates 0 − 10◦ South and 90 − 80◦ West. While
a univariate time series display is given in Figure 1a, the monthly data graphed for each year are
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shown in Figure 1b.

3 Forecasting method

Let {Zw, w ∈ [0,∞)} be a seasonal univariate time series which has been observed at N equispaced
time. In the El Niño time series from 1950 to 2008, we have N = 708, n = 59, p = 12. The observed
time series is then divided into 59 successive paths of length 12 in the following setting

yt = {Zw, w ∈ (p(t− 1), pt]} ∀t = 1, · · · , 59.

Our method begins with decentralizing data by subtracting pointwise mean µ̂ = 1
p

∑p
i=1 yi. The

mean-adjusted data are denoted as Ŷ ∗ = Y − µ̂, where Y = [y1, · · · , y59]. Using principal com-
ponent analysis (PCA), Ŷ ∗ can be approximated by the sum of separable principal components
and their associated scores in order to achieve minimal L2 loss of information. Computationally,
applying singular value decomposition to Ŷ ∗ gives Ŷ ∗ = ΨΛV

′
, where Ψ is an p×p unitary matrix,

Λ is a p×p diagonal matrix, and V
′

is p×n matrix. Let φk,i be the (i, k)th element of Ψ truncated

at first K columns. Since B̂ = Ŷ ∗
′
Ψ, β̂t,k is the (t, k)th element of B̂ truncated at first K columns.

Therefore, Y can be written as

Y = µ̂+ φ̂
′
1β̂1 + · · ·+ φ̂′Kβ̂K + ε̂,

where µ̂ = [µ̂1, · · · , µ̂12]′ is the pointwise mean vector; φ̂1, · · · , φ̂K ∈ RK (φ̂k = [φ1,k, · · · , φ12,k])
are estimated principal components; β̂1, · · · , β̂K (β̂k = [β1,k, · · · , β59,k]′) are uncorrelated principal
component scores satisfying

∑K
k=1 β̂

2
k <∞, for k = 1, · · · ,K; ε̂ is assumed to be a zero-mean 12×59

residual matrix; and K < 12 is the optimal number of components.

Since {β̂1, · · · , β̂K} are uncorrelated to each other, it is appropriate to forecast each series β̂k using
a univariate time series forecasting method, such as the ARIMA (Box et al. 2008) or exponential
smoothing (Hyndman et al. 2008). By conditioning on the historical observations (I) and the fixed
principal components (Φ = φ̂1, · · · , φ̂K), the forecasted curves are expressed as

ŷTS
n+h|n = E[yn+h|I,Φ] = µ̂+ φ̂

′
1β̂1,n+h|n + · · ·+ φ̂′K β̂K,n+h|n, (2)

where β̂k,n+h|n denotes the h-step-ahead forecasts of βk,n+h.

4 Updating methods

As we observe some recent data consisting of the first m0 time period of yn+1, denoted by yn+1,e =
[yn+1,1, · · · , yn+1,m0 ]

′
, we are interested in forecasting the data in the remaining time period of year

n + 1, as denoted by yn+1,l = [yn+1,m0+1, · · · , yn+1,12]
′
. Using (2), the time series (TS) forecast of

yn+1,l is given by

ŷTS
n+1|n,l = E[yn+1,l|I l,Φl] = µ̂l + φ̂

′
1,lβ̂

TS
1,n+1|n + · · ·+ φ̂′K,lβ̂

TS
K,n+1|n,

where µ̂l = [µ̂m0+1, · · · , µ̂12]′, Φl = {φ′1,l, · · · ,φ
′
K,l} are the principal components corresponding to

the remaining time period, β̂TS
k,n+1|n are the one-step-ahead forecasted principal component scores,

and I l denotes the historical data corresponding to the remaining time period.
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It is clear that this TS method does not consider any new observations. With the aim to improve
forecast accuracy, it is desirable to dynamically update the forecasts for the remaining time period
of the year n+ 1 by incorporating the new observations.

4.1 Block moving method

The block moving (BM) method considers the most recent data as the last observation in a complete
data matrix. Because time is a continuous variable, we can observe a complete data matrix at any
given time interval. Thus, the TS method can still be applied by sacrificing a number of data points
in the first year. This loss of data will not affect the parameter estimation as long as the number
of curves is large. A concept diagram is presented in Figure 2 to examplify this idea.

Figure 2: Dynamic update via the block moving
approach. The cyan region shows the data loss
in the first year. The forecasts for the remaining
months in year n+ 1 can be updated by the fore-
casts using the TS method applied to the upper
block.
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Figure 3: Two-dimensional contours of the sym-
metric penalty function pq(β) = |β1|q + |β2|q = 1
for q=0.2, 0.5, 1, 2, 5. The scenario q = 1 (red
diamond) yields the lasso and q = 2 (black circle)
yields ridge regression.

4.2 Ordinary least squares approach

We can express (2) in a matrix form. Let F e be a m0 ×K matrix whose (j, k)th entry is φ̂k,j for
1 ≤ j ≤ m0, 1 ≤ k ≤ K. Denote β̂n+1 = [β̂1,n+1, · · · , β̂K,n+1]′ as a K × 1 vector, and ε̂n+1,e =
[ε̂n+1,1, · · · , ε̂n+1,m0 ]

′
be a m0 × 1 vector. As the mean-adjusted y∗n+1,e becomes available, we have

an ordinary least squares (OLS) regression expressed as

y∗n+1,e = F eβ̂n+1 + ε̂n+1,e.

The β̂n+1 can be approximated via the OLS method by solving

argmin
β̂n+1

∥∥∥ŷ∗n+1,e − F eβ̂n+1

∥∥∥ ,
thus obtaining

β̂OLS
n+1 =

(
F e
′
F e
)−1

F e
′
ŷ∗n+1,e.
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The OLS forecast of yn+1,l is then given by

ŷOLS
n+1|n,l = E[yn+1,l|I l,Φl] = µ̂l + φ̂

′
1,lβ̂

OLS
1,n+1 + · · ·+ φ̂′K,lβ̂

OLS
K,n+1.

4.3 Penalized least squares approach

The OLS method uses new observations to improve forecast accuracy for the remaining time period
of year n + 1, but it needs a sufficient number of observations (at least equal to K) in order for
β̂OLS

n+1 to be numerically stable. In addition, it does not make use of TS forecasts. To overcome these
problems, we adapt the idea of PLS by penalizing the OLS forecasts, which deviate significantly
from the TS forecasts. The regression coefficients of PLS are obtained by

argmin
β̂n+1

‖ŷ∗n+1,e − F eβ̂n+1‖+ λpq(β̂n+1),

with penalty parameter λ and a given penalty function pq(β̂n+1) expressed as

pq(β̂n+1) =
m0∑
j=1

|β̂j − β̂TS
j |q ≤ c,

which bounds the Lq norm of parameters in the model (Frank & Friedman 1993). The tuning
parameter c controls the size of the hypersphere, and hence, the shrinkage of β̂j toward the β̂TS

j . A
two-dimensional contours of the penalty function for different values of q is presented in Figure 3.

When q = 2, the PLS method corresponds to ridge regression, which is rotationally invariant
hypersphere centered at the origin. Thus, the β̂n+1 obtained from the PLS method minimizes(

ŷ∗n+1,e − F eβ̂n+1

)′ (
ŷ∗n+1,e − F eβ̂n+1

)
+ λ

(
β̂n+1 − β̂TS

n+1|n

)′ (
β̂n+1 − β̂TS

n+1|n

)
, (3)

The first term in (3) measures the goodness of fit, while the second term penalizes the departure
of the OLS coefficients from the TS coefficient forecasts. The β̂n+1 obtained can thus be seen as a
tradeoff between these two terms, subject to a penalty parameter λ.

By taking first derivative with respect to β̂n+1 in (3), we obtain

β̂PLS
n+1 =

F e
′
F e

F e′F e + λI
β̂OLS

n+1 +
λI

F e′F e + λI
β̂TS

n+1|n,

where I is identity matrix. When the penalty parameter λ→ 0, β̂PLS
n+1 is simply β̂OLS

n+1 ; when λ→∞,
then β̂PLS

n+1 reduces to β̂TS
n+1|n; when 0 < λ < ∞, β̂PLS

n+1 is a weighted average between β̂TS
n+1|n and

β̂OLS
n+1 . Therefore, the PLS forecast of yn+1,l is given as:

ŷPLS
n+1,l = E[yn+1,l|I l,Φl] = µ̂l + φ̂

′
1,lβ̂

PLS
1,n+1 + · · ·+ φ̂′K,lβ̂

PLS
K,n+1.

Similar to (3), ridge regression (RR) penalizes the OLS coefficients, which deviate significantly from
0. The RR coefficients minimize a penalized residual sum of square,(

ŷ∗n+1,e − F eβ̂n+1

)′ (
ŷ∗n+1,e − F eβ̂n+1

)
+ λ

(
β̂
′
n+1β̂n+1

)
, (4)

where λ > 0 is a tuning parameter that controls the amount of shrinkage. By taking the derivative
with respect to β̂n+1 in (4), we obtain

β̂RR
n+1 =

(
F e
′
F e + λI

)−1

F e
′
y∗n+1,e
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Therefore, the RR forecast of yn+1,l is given as:

ŷRR
n+1,l = E[yn+1,l|I l,Φl] = µ̂l + φ̂

′
1,lβ̂

RR
1,n+1 + · · ·+ φ̂′K,lβ̂K,n+1.

5 Point forecast comparison

By means of comparison, we also investigate the forecast performance of seasonal autoregressive
moving average (SARIMA), random walk (RW) and mean predictor (MP) models. The MP model
consists in predicting values at year t + 1 by the empirical mean values from year 1 to t for each
month, while the RW approach predicts new values at year t + 1 by the observed values of El
Niño indices at year t. The SARIMA requires the specification orders of seasonal and nonseasonal
components of an ARIMA model, which are determined by an automatic algorithm of Hyndman
& Khandakar (2008). As a result, the optimal SARIMA is an autoregressive model at lag 2 and
differencing at lag 12, and a moving average model at lag 1 and differencing at lag 12.

As the presence of outliers can affect the forecast accuracy, we applied an outlier detection method
of Hyndman & Shang (2008), and detected four outliers corresponding 1982, 1983, 1997 and 1998.
For details on detected outliers, see Dioses et al. (2002). Consequently, the data in years 1982, 1983,
1997 and 1998 are removed from further analysis.

We split the data into a training set (containing indices from 1950 to 1970 excluding the outliers),
a validation set (containing indices from 1971 to 1992) for finding optimal λ and K, and a testing
set (containing indices from 1993 to 2008). In this data set, the optimal K is determined to be 5.

The best forecast method is determined with a minimal mean square error (MSE) in the testing
set. The MSE is expressed as:

MSE =
1
s

1
p

s∑
w=1

p∑
j=1

(yn+w,j − ŷn+w,j)2,

where s represents the length of hold-out testing sample.

Update month MP RW SARIMA TS OLS BM PLS RR
Mar-Dec 0.6928 1.3196 1.4155 0.7101 0.8324 0.6895 0.6623 0.8356
Apr-Dec 0.7115 1.3607 1.4706 0.7296 0.7147 0.7180 0.6924 0.6505
May-Dec 0.6822 1.3683 1.3195 0.7025 1.2033 0.6903 0.6588 0.6164
Jun-Dec 0.6792 1.3710 1.1880 0.7036 1.6853 0.6811 0.6111 0.5868
Jul-Dec 0.6984 1.4660 1.2089 0.7322 1.4431 0.6772 0.5492 0.5101
Aug-Dec 0.7011 1.5726 1.1279 0.7541 1.5444 0.6835 0.6697 0.6552
Sep-Dec 0.7056 1.6499 1.0624 0.7800 1.7000 0.7096 0.6132 0.6259
Oct-Dec 0.7261 1.6972 0.5394 0.8262 0.6713 0.7443 0.6484 0.5653
Nov-Dec 0.7112 1.5097 0.4244 0.8201 0.1151 0.7566 0.4186 0.1085
Dec 0.5646 1.1353 0.0676 0.6613 0.1208 0.5093 0.0985 0.1208
Mean 0.6873 1.4450 0.98242 0.7420 1.0030 0.6859 0.5622 0.5275

Table 1: MSE of the MP, RW, SARIMA, TS, OLS, BM, PLS, and RR methods with different
updating months in the testing sample. The minimal values are marked by bold.

While the point forecast results are presented in Table 1, Table 2 shows the optimal λ by minimizing
the MSE criterion in the validation set on a dense grid {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 3, 5,
7, 10, 15, 50, 102, 103, 104, 105, 106}.
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λ
Update month

Mar-Dec Apr-Dec May-Dec Jun-Dec Jul-Dec Aug-Dec Sep-Dec Oct-Dec Nov-Dec Dec

PLS 0.1 1 10 50 10 3 50 100 100 1
RR 3 3 7 7 7 3 7 7 3 10−6

Table 2: Optimal tuning parameters used in the PLS and RR methods.

In order for the SVD algorithm used in our updating methods to work, we must have at least two
new observations. Thus, it is not possible to update forecasts for Feb-Dec.

6 Discussions and Conclusions

Our approach to forecasting El Niño indices treats the historical data as a high-dimensional vector
time series. It has been shown that PCA effectively reduces dimensionality and minimizes the L2

approximation error. Since principal component scores are uncorrelated, we used an exponential
smoothing method to forecast scores, from which one or multi-steps-ahead forecasts are obtained.

We proposed four dynamic updating methods and showed their point forecast accuracy improve-
ment. Although the penalty term of the PLS method is taken to be q = 2 in this paper, it is also of
common interest to examine other penalty functions, such as q = 1. When q = 1, the PLS method
corresponds to lasso, which is not only a shrinkage method but also a variable selection method.
However, the difficulty is that there is no closed form expression for the regression coefficients.
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