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Abstract:  Aiyoshi and Maki (2009) proposed a Nash equilibrium model applying continuous time replicator 
dynamics to the analysis of oligopoly markets. This paper considered a game problem under the simultaneous 
constraints of the allocation of product and market shares. The model assumes that a Nash equilibrium 
solution can be applied and derived the gradient system dynamics that can attain the Nash equilibrium 
solution without violating the simplex constraints. Models assumed that a minimum of three firms exist 
within a market, and that these firms behave to maximize their profits, defined as the difference between 
sales and cost functions with conjectural variations.  

Before conducting an empirical analysis based on observations of oligopoly markets in the real world, we 
have to assess the robustness of the Nash equilibrium model by changing profit and cost function parameters, 
as well as the initial production values and market shares of the firms. This is necessary in order to assess 
how well observations in the real world match those forecasts by the model. When the model is fragile, no 
policy implications could be extracted from the model.  

The paper considers differences of the converged values in the number of firms included in the model, in the 
numbers of the commodities included in the model, in the specification of firms’ profit and cost functions, 
and in the initial values for the level of production and market share. The approach facilitates understanding 
of the robustness of attaining equilibrium in an oligopoly market.  
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1. INTRODUCTION 

Oligopoly markets prevail in developed countries in both the industrial and service sectors. Dixit (1988) 
analyze the U.S. automobile industry. Klepper (1990) analyze the airline industry. In this study, we propose a 
simple Nash equilibrium model and use a simulation method to derive an optimal solution for production 
decisions by rival firms in oligopoly markets. Aiyoshi and Maki (2009) proposed a Nash equilibrium model 
that applies continuous time replicator dynamics to the analysis of oligopoly markets. In this paper, we 
considered a game problem under the simultaneous constraints of allocation of product and market share.  

Before conducting empirical analysis using observation on oligopoly markets in the real world, we have to 
check the robustness of the Nash equilibrium model by changing the parameters of firms’ profit and cost 
functions as well as the initial values of the amount of production and firms’ market share. This process is 
necessary to conduct forecasting and simulation using real-world observations after estimating the model. We 
sometimes obtain unrealistic solutions as a result of the fragility of the model. In these cases, no policy 
implications can be drawn. 

The paper is organized as follows. Section 2 provides a general explanation of the double constraint 
interference model, which concentrates on the double allocation problem of production capacity and market 
share. Section 3 introduces a normalized Nash equilibrium solution for the profit maximization of players’ 
functions modeled in the double constraint interference model. Section 4 describes the application of 
numerical methods to the Nash equilibrium solution. Section 5 proposes a simulation model and reports the 
results. Section 6 presents the conclusions.  

2. NONCOOPERATIVE NASH EQUILIBRIUM MODEL AND RESOURCE ALLOCATION 

Consider a continuous game problem with P players and N strategy variables, governed by duplicate simplex 
constraints. The pth player’s strategy variables are 1( , , )p p p N

Nx x R= ∈x   and 1, , ,  1, , .i N p P= =   The 

variable matrix X  that contains all variables is 

1
1 1 1

1

1

( , , )

P

P

P
N N N

x x

X

x x

  
  = = =   

      

x
x x

x



    



 (1) 

(where ,  1, ,p p P=x   are column vectors; and ,  1, ,i i N=x  are row vectors). Let the pth player’s profit 

function be ( )pE X . An unconstrained game problem is formulated as 

1max  ( , , , ),   1, ,
p

p p PE p P=
x

x x x   , (2) 

where px is the pth player’s only known variable and the other players’ variables ( 1 1 1, , ,p p P− +x x x x  )are 
unknown parameters. Consider the game problem constrained by the simultaneous allocation of products and 
market share as 

1max  ( , , , )
p

p p PE
x

x x x   (3a) 

1 1
subj. to , 1, , 1, , ,, ,

N Pp p p
i i ii p

x a p x i NP b
= =

= = = =    (3b) 

0, 1, , , ,1,p
ix i N p P≥ = =   (3c) 

where, by definition, 

1 1
.

P Np
ip i

a b
= =

=   (4) 

As an example, let P firms produce N types of products in a market; p represents the number of firms, and i  
represents a product type. The problem, represented by Eq. (3), is called a game problem with double 
allocation constraints, in which the allocation of production ability and market share is considered 
simultaneously. The properties of Nash equilibrium solutions, which are assumed to be rational solutions for 
non-cooperative game problems, differ depending on their equality constraints.  
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3. THE NORMALIZED NASH EQUILIBRIUM SOLUTION FOR THE CONSTRAINT 
INTERFERENCE PROBLEM 

The Nash equilibrium solution X  for the interference-type problem is denoted by Eq. (3), with double 
simplex constraints. In this case, stationary conditions for each player do not exist, unlike in the constraint 
independent–type problem. A maximization problem for the pth player, under the condition that other 
players’ strategies 1 1 1, , , , ,p p P− +x x x x   are given, is expressed as 

1 1 1max  ( , , , , , )
p

p p p p PE − +

x
x x x x x   (5a) 

11
, ,subj. to , 1, , 1, , ,

N Pp p p q
qi i i ii q p

x a p x b i NP x== ≠
= = = − =    (5b) 

0, 1, , , , ,1,p
ix i N p P≥ = =   (5c) 

1 1
.

P Np
ip i

a b
= =

=   (6) 

In Eq. (5), the pth player’s strategy px  that satisfies Eq. (5b) is determined uniquely, because the other 
players’ strategy variables are already given. There is no freedom to maximize the function pE . Therefore, to 
define the nontrivial Nash equilibrium solutions for constraint interference-type problems, we introduce the 
normalized Nash equilibrium solution proposed by Rosen (1965), which has the flexibility of maximization 
and for which stationary conditions can be derived. The normalized Nash equilibrium solution X  for the 
constraint interference–type problem is defined by relaxing interference among players in the constraint Eq. 
(5b) and considering the problem of maximizing the sum of all players’ profit functions: 

1 1 1

1
max ( , , , , , )

P p p p p P

pX
E − +

= x x x x x   (7a) 

1 1
subj. to , 1, , , , 1, , ,

N Pp p p

i i ii p
x a p P x b i N

= =
= = = =    (7b) 

0, 1, , , 1, ,p

ix i N p P≥ = =   (7c) 

1 1
.

P Np
ip i

a b
= =

=   (8) 

Notice that Eq. (7a) is dependent on unknown parameters 1( , , ),PX = x x  and the variable 
1( , , )PX = x x  is maximized simultaneously. Let the function 1: N P N PF R R R× ×× →  be defined by 

1 1 1

1
( ; ) ( , , , , , ).

P p p p p P

p
F X X E − +

=
= x x x x x   (9) 

 We define X  as the local normalized Nash equilibrium solution for the constraint interference–type problem 
in Eq. (3), when the neighborhood ( ) N PB X R ×⊆  of X  exists such that the following inequality holds: 

( ; ) ( ; )  ( ) ,F X X F X X X B X S≥ ∀ ∈ ∩  (10) 

where { }|  satisfies Eq.(7b)(7c) .S X X=  Note that the normalized Nash equilibrium solution is not a solution 

for the simple maximization of the sum of all players’ profit functions, ,F  but defines the maximum point, 

F , with respect to variable X  in ,F  given the value of X  in F as a parameter (that is, it is defined as a 
fixed point of the maximization operation). 

4. SEARCH DYNAMICS OF THE NASH EQUILIBRIUM SOLUTION FOR THE CONSTRAINT 
INTERFERENCE –TYPE PROBLEM 

We investigate the dynamic used to search for the normalized Nash equilibrium solution for the constraint 
interference–type problem expressed in Eq. (3), in which the double constraints of allocating production 
ability and market share are imposed simultaneously. In order to apply the results of the above constraint 
interference–type problem to the double constraint case directly, we transform the N P× matrix variable X  

into the N P×  dimensional column vector variable as 1( , , )T PT T=X x x , and reformulate the double 

constraints of Eq. (3b) as the linear equality constraint of the vector-matrix form =AX c  with a 
( ) ( )P N N P+ × ×  coefficient matrix A , expressed as 
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1 1
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 (11) 

Here an arbitrary element of equality =AX c  must be satisfied, under the balancing conditions of Eq. (8), 

and then  1N P= + −A  ranked. Let A  be the ( 1) ( )P N N P+ − × ×  matrix in which an arbitrary row of 

matrix A  is deleted. We can propose a dynamic to search for the normalized Nash equilibrium solution of a 
game problem with a double interference constraint allocation–type problem as follows: 

1( )
( ( )) ( ( )) ( ( ); ( )),Md t

Q t M t F t t
dt

−= ∇A
X X X X X  (12) 

where 

1( )
( )

,

( )P

d t dt
d t

dt
d t dt

 
 =  
 
 

x
X

x
  (13a) 

1 1 1( ) ( ) ( ( ) ) ,M T TQ I M M− − −= −A X X A A X A A  (13b) 
1( ) diag(1/ )   ( ) ( )matrixp

iM x N P N P− = × × ×X  (13c) 

1

1 1

1

( , , )

( ; ) .
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 (13d) 

Here the ( ) ( )N P N P× × × variable metric projection matrix ( )MQA X  cannot be expressed by a simple 

formula, because the inverse 1 1( ( ) )TM − −A X A  cannot be formulated explicitly. 

5. SIMULATIONS OF THE NORMALIZED NASH EQUILIBRIUM SOLUTION FOR THE 
CONSTRAINTS OF DOUBLE RESOURCE ALLOCATION 

5.1 The Three-Person, Three-Strategy Game (Benchmark) 

Consider a three-person (P = 3) game with three products (N = 3). Even in the simplest model, there is no 
loss of generality from the model described in Section 2. As a concrete example, consider three automobile 
companies, each of which produces three types of automobiles: budget, midlevel, and luxury. The decision 
variables are 1 1 1 1 2 2 2 2

1 2 3 1 2 3( , , ) ,  ( , , )  T Tx x x x x x= =x x and 3 3 3 3
1 2 3( , , )Tx x x=x , where the subscripts indicate the 

product and the superscripts indicate the firm. The profit functions of each firm are 

11 1
( ) ( ) ,

N N Pp p p p q
qi i pqi i ii i q p

E X f x x xθ== = ≠
= − −    (14) 

where pqiθ is the loss parameter suffered by the ith product when player p produces p
ix and player q produces 

q
ix . In the economics of firms, gain is the corporate profit and loss represents the various kinds of conjectural 

costs. The constraints are production capacity and market share as expressed by Eq. (3b), and 
1 2 3 1a a a= = =  and 1 2 3 1b b b= = =  for simplicity. The gain for firm 1 from products 1, 2, and 3 is 

indicated, respectively, as 

1 1 1 2
1 1 1( ) 2( 1.4) 3.2f x x= − − + , 1 1 1 2

2 2 2( ) 1.9( 1.3) 2.8f x x= − − + , 

1 1 1 2
3 3 3( ) 1.8( 1.2) 2.4f x x= − − +  (15) 
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The difference in the function, p
if  is due to the production technology differences among products and firms. 

The profit function 1 1 2 3( , , )E x x x  for firm 1 is specified as 

1 1 2 3 1 1 1 1 1 1
1 1 2 2 3 3

1 2 1 2 1 2 1 3 1 3 1 3
121 1 1 122 2 2 123 3 3 131 1 1 132 2 2 133 3 3

( , , ) ( ) ( ) ( )

                    ( ),

E f x f x f x

x x x x x x x x x x x xθ θ θ θ θ θ
= + +

− + + + + +

x x x
 

where 111 112,θ θ , and 113θ are assumed to be zero. For firm 2, the gain functions for products 1, 2, and 3, 

respectively, are 

2 2 2 2
1 1 1( ) 2.1( 1.5) 3.8f x x= − − + 2 2 2 2

2 2 2( ) 1.9( 1.4) 3.2f x x= − − +  

2 2 2 2
3 3 3( ) 1.7( 1.3) 2.6f x x= − − + . (16) 

The profit function, 2 1 2 3( , , )E x x x , for firm 2 is specified as 

2 1 2 3 2 2 2 2 2 2
1 1 2 2 3 3

2 1 2 1 2 1 2 3 2 3 2 3
211 1 1 212 2 2 213 3 3 231 1 1 232 2 2 233 3 3

( , , ) ( ) ( ) ( )

                    ( ),

E f x f x f x

x x x x x x x x x x x xθ θ θ θ θ θ
= + +

− + + + + +

x x x
 

where 221 222,θ θ , and 223θ  are assumed to be zero. For firm 3, the gain functions for products 1, 2, and 3, 

respectively, are 

2 2 2 2
1 1 1( ) 2.2( 1.6) 4.4f x x= − − + 2 2 2 2

2 2 2( ) 1.9( 1.5) 3.6f x x= − − +  

2 2 2 2
3 3 3( ) 1.6( 1.4) 2.8f x x= − − +  (17) 

The profit function, 3 1 2 3( , , )E x x x , for firm 3 is specified as 

3 1 2 3 3 3 3 3 3 3
1 1 2 2 3 3

3 1 3 1 3 1 3 2 3 2 3 2
311 1 1 312 2 2 313 3 3 321 1 1 322 2 2 323 3 3

( , , ) ( ) ( ) ( )

                    ( ),

E f x f x f x

x x x x x x x x x x x xθ θ θ θ θ θ
= + +

− + + + + +

x x x
 

where 331 332,θ θ , and 333θ are assumed to be zero. To choose the values for the parameters, ijkθ (i, j, k = 1, 2, 3) 

except 111 112,θ θ , 113θ , 221 222,θ θ , 223θ , 331 332,θ θ , and 333θ , we conducted many experiments before selecting two 

sets of parameters. The set indicated in the first simulation shows the internal solutions for firms and 
commodities. The set of parameters indicated in the second simulation shows that each firm specializes in the 
production of at least one commodity. This is a case for product differentiation within an oligopoly market. 
In the first simulation, we assigned the 18 values of pqiθ  as 2.0, resulting in the normalized Nash equilibrium 

solution for the decision variable 1 2 3( , , )X = x x x . Table 1 indicates the changes in the normalized Nash 

equilibrium value for 1 2 3( , , )X = x x x  from the initial values to the converged values. 

Table 1. Benchmark Values of X 
Initial values of (0)X   Converged values 

( )
0.33 0.33 0.34

0 0.33 0.34 0.33

0.34 0.33 0.33

X

 
 =  
 
 

0.200 0.323 0.476
ˆ 0.329 0.325 0.346

0.471 0.352 0.177

X

 
 =  
 
 

5.2 Changes in Converged Values Caused by Changes in pqiθ  

In the second simulation, we change the conjectural variation of firm p against firm q from 0.0 to 5.0. Figure 
1 indicate the normalized Nash equilibrium solution for 1 2 3( , , )X = x x x  by changing the parameters of pqiθ . 

The horizontal axis indicates the values of conjecture from 0 to 5; the vertical axis indicates the market share 
for commodities 1–3. Figure 1(a) indicates changes in the market share of commodity 1 by the three firms. 
When the value of pqiθ is relatively small, all firms produce commodity 1. When the conjecture exceeds the 

point of 4 on the horizontal axis, firm 3 (blue plots) produces only commodity 1, and firms 1 (red plots) and 2 
(green plots) do not produce commodity 1 (Fig. 1(a)). The tendency is the same for commodity 2 and 3 (Figs. 
1(b) and 1(c)). In the oligopoly market, conjectural variation plays an important role in determining the share 
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of the products within and among firms. When the values of conjectural variation are small, each firm 
produces a full set of commodities. In contrast, when the values of the conjectural variation are large, product 
specialization takes place within an oligopoly market. 

Figure 1. Changes in the Market Share as a Result of Changes in the Parameters of pqiθ  

(a) Commodity 1 (b) Commodity 2 

(c) Commodity 3 

5.3 Initial Values 

In the third simulation, we change the initial values of matrix X. Table 2 indicates the converged values of X 
in a different set of parameters of pqiθ , namely, 3.6pq

iθ = and 4.2pq
iθ = . In both cases although the initial 

values of X(0) are different, the converged values are the same for 3.6pq
iθ = and 4.2pq

iθ = . This experiment 

shows that the convergence method is robust with respect to changes in the initial values. However, when the 
initial values of X(0) are in the neighborhood of the boundary, the converged values are sometimes different 
from one another. 

Table 2. Initial Values of X(0) and Converged Values of X 

Initial values (0)X  Converged values ( )3.6pq
iθ =  Converged values ( )4.2pq

iθ =  

( )
0.33 0.33 0.34

0 0.33 0.34 0.33

0.34 0.33 0.33

X

 
 =  
 
   

( )
0.4 0.4 0.2

0 0.3 0.1 0.6

0.3 0.5 0.2

X

 
 =  
 
   

0.000 0.000 1.000
ˆ 0.356 0.644 0.000

0.644 0.356 0.000

X

 
 =  
 
   

0.000 0.000 1.000
ˆ 0.356 0.644 0.000

0.644 0.356 0.000

X

 
 =  
 
 

0 0 1
ˆ 0 1 0

1 0 0

X

 
 =  
 
   

0 1 0
ˆ 0 0 1

1 0 0

X

 
 =  
 
   
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5.4 Changes in Equality Constraints 

We have two kinds of data for quantity produced: share data and quantity data. This experiment examines the 
applicability of the calculation method for both shares and quantity. The sum of the share becomes unity, 
while the sum of the quantities need not become unity. We set a = (1.2, 1.0, 0.8) and b = (0.9, 1.0, 1.1)—that 
is, the total of vector a or vector b is not unity but three. This experiment shows that the method is applicable 
not only the case of shares but also to the case of quantity produced. 

5.5 Three-Person, Four-Strategy Game 

This experiment extends the number of firms from three to four, which yields the converged values indicated 
in Table 3. 

Table 3. Values of X in a Three-Person, Four-Strategy Game 

Initial values (0)X  Converged values ( )2.0pq
iθ =  Converged values ( )4.2pq

iθ =  

( )
0.25 0.25 0.25 0.25

0 0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

X

 
 =  
 
   

0.046 0.165 0.312 0.477
ˆ 0.245 0.235 0.247 0.273

0.459 0.349 0.191 0.000

X

 
 =  
 
 

0.0 0.0 0.25 0.75
ˆ 0.0 0.5 0.5 0.0

0.75 0.25 0.0 0.0

X

 
 =  
 
 

5.6 Four-Person, Three-Strategy Game 

This experiment extends the number of commodities from three to four, which yields the converged values 
indicated in Table 4. 

Table 4. Values of X in a Four-Person, Three-Strategy Game 

Initial values (0)X  Converged values ( )2.0pq
iθ =  Converged values ( )4.2pq

iθ =  

( )

0.25 0.25 0.25

0.25 0.25 0.25
0

0.25 0.25 0.25

0.25 0.25 0.25

X

 
 
 =
 
 
   

0.033 0.235 0.482

0.172 0.232 0.346ˆ
0.325 0.254 0.171

0.471 0.279 0.000

X

 
 
 =
 
 
 

0.0 0.0 0.75

0.0 0.5 0.25ˆ
0.25 0.5 0.0

0.75 0.0 0.0

X

 
 
 =
 
 
   

 

6. CONCLUSIONS 

Because oligopoly firms usually produce a variety of products, it is important to simultaneously understand 
both the determination of market shares among firms and the product mix within a firm. As the total amount 
of production for both firms and commodities is a priori given in the model as the constraint, managers are 
able to consider production strategy relying on the profit functions in the model. After the functional form 
and parameters are fixed, the convergent process is managed by the replicator dynamics algorithm. Using the 
Nash equilibrium simulation model, we can generate various optimal paths for production by changing the 
conjectures of firms. We confirmed that the present algorithm is good in assessing policy simulation. 
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