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Abstract: A utility function u : Rn
+ :=

{
x ∈ Rn | xi ≥ 0 for all i

} → R := R∪{−∞} is often used to
reflect the preference structure with respect to possible consumption of n commodities, denoted by a vector
x ∈ Rn

+ each of which are priced according to an associated vector of prices p ∈ Rn
+. We assume that it may

take the value −∞ so as to allow for implicit constraints in the framing of associated optimization problems.
It is well known that one can define a preference relation yRx, ”y is preferred to x”, via a utility using
y ∈ S−u(x) :=

{
z ∈ Rn

+ | −u(z) ≤ −u(x)
}
. It is natural to assume u is non-decreasing and so u(x1) ≤ u(x2)

when x1 ≤ x2. Clearly for any strictly increasing monotone function k : R → R we have S−k◦u = S−u,
allowing one to rescale the utility and leading an inherent lack of uniqueness.
When dealing with consumer demand in economic modeling, researchers often solve the optimization problem
which maximises the utility for a given budget constraint. The real data on consumption are used to fit
parameters of various a-priori prescribed mathematical functions which demonstrate constant return to scale
and thus pose as utilities. An alternative approach to the fitting of a utility function (Eberhard et al. (2007))
allows the raw data to determine the functional form of the utility. This approach is motivated by the desire
to allow the data to influence the corresponding price and quantity-price elasticities that are needed to be
estimated using real data on consumption preference (Kocoska et al. (2009)) and (Eberhard et al. (2009c)).
In econometrics linear regression is used for the computing of elasticities but the approach used in (Kocoska
et al. (2009)) is definitely not econometric in this sense as it involves first the fitting of a utility from raw
data. However, if we will define econometrics to be the broader activity of fitting economic variables using
data then we are definitely employing the econometric approach in the present work. The approach used in
(Kocoska et al. (2009)) allows researchers to implement this data fitting procedure by using a very elegant
non-linear optimisation algorithm to fit a set of parameters from which the elasticities may be easily deduced
using the sensitivity analysis of associated linear programming problems. The purpose of this paper is to
provide a theoretical underpinning for the utility fitting or estimation step in this procedure.
In practise we only have access to a finite selection of observed consumption data. We do not have access
to the hypothesized underlying utility. The problem of fitting a utility function to this finite data set in a
way that yields the same preference structure has already been solved by (Afriat (1967)). We observe here
that one can fit a concave Afriat utility to any finite sample of consumption data taken from any (not even
concavifiable) utility. This provides an approximation paradigm via the indifferent curves so generated.
The Afriat utility provides a well defined family of polyhedral indifference curves (irrespective of the arbitrary
scaling issue of the utility itself). As we collect more data we may refine our approximation of these level
curves and hence the question arises as to whether one can validly discuss some notion of convergence to
a limiting preference structure as the data sampled tends to an infinite ”dense” set of points. Indeed is it
possible to have a convergence, in some well defined sense, to an underlying utility that rationalises this data
set? It is this question we discuss in this paper and provide some concise theory for a positive answer to this
question. The critical tool is the adaption of variation limits (Rockafellar and Wets (1998)) to this problem.
The reason for the success on this mathematical convergence notion lies in its ability to characterise the
set-convergence of indifference curves and to characterise the stability of optimal solutions under objective
function perturbations.
The main contribution of this theory makes to the literature is that it provides a set of reasonable condi-
tion on the demand correspondence that ensures the existence of a utility that rationalises the preference
structure and give rise to the observed demand (see Theorem 4). Moreover we can assert that the demand
correspondence and the utility can be reconstructed, via the fitting of a sequence of Afriat utilities, using only
a countable collection of observations. In this sense this theory provides an existence proof of an underlying
utility. We can also give condition that ensure the fitted utility is actually concave improving on the results
of (Kannai (2004)).
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1 SOME REVEALED PREFERENCE THEORY

In this section we provide a summary of some revealed preference theory that is relevant to the mathematical
formulation of our theory on convergence.
The consumer is assumed to choose a consumption bundle within their budget w > 0 with respect to
the associated prices p and so choose in BG(p, w) :=

{
x ∈ Rn | 〈p, x〉 :=

∑n
i=1 pixi ≤ w

}
an x that is at

least preferred to all elements in BG(p, w). As BG(p, w) = B(λp, λw) for all λ > 0 we may redefine our
unit of currency so that the whole budget has unit wealth with respect to the new currency i.e. w = 1.
Having done this the prices actually correspond to dimensionless proportions. Thus a consumer is deemed
to consume a commodity bundle x ∈ XR (p) at a price p if it solves the utility maximization problem
x ∈ arg max {u (x) | 〈p, x〉 ≤ 1} , where the ”arg max” refers to the elements that achieve the maximum in
the optimization problem and the optimal value function v(p) := max {u (x) | 〈p, x〉 ≤ 1} is referred to as the
indirect utility. The indirect utility v(p) assigns the maximum utility to a consumer for a bundle of goods
under price p.
Usually the preferred set R(x) :=

{
y ∈ Rn

+ | yRx
} ≡ S−u(x) is assumed convex and thus u must be a

quasi–concave function, when it exists (or −u is quasi–convex when S−u(x) are all convex). The function v
is quasi-convex (i.e. Sv (p) are all convex) and under mild assumptions (Martinez-Legaz (1991)) we have a
dual formulas

v(p) = sup{u(x) | 〈x, p〉 ≤ 1} and u(x) = inf {v(p) | 〈x, p〉 ≤ 1} . (1)
and so Graph XR = {(p, x) | u (x) = v (p)} (2)

When this symmetric duality (1) holds we have the corresponding optimal solution set PR (x) defined by
{p | u (x) = v (p)}. On comparison with (2) we see that the graph of GraphPR corresponds to GraphX−1

R .
That is, p ∈ PR (x) if and only if x ∈ XR (p). In practise even when u is assumed continuous, we are
not assured that v is finite everywhere (as the supremum may attain +∞) but the function v is evenly
quasiconvex (i.e. the sets Sv(p) are the intersection of open half spaces).
We do not have a direct ability to observe u(x) but x ∈ Xu(p) where Xu(p) stands for XR when R is
generated by a utility u. We say that x ∈ XR(p) is a revealed preference to y and denote this by x ºXR y
when 〈p, x − y〉 ≥ 0. That is y was in budget as 1 ≥ 〈p, x〉 ≥ 〈p, y〉 but as (x, p) ∈ XR we have chosen x
instead of y. That is we know that y in not in arg max {u (x) | 〈p, x〉 ≤ 1}.
The transitive closure of ºXR gives a partial order ºR that denotes x ºR y when there exists x = x0, x1,
. . . , xn = y with xi+1 ºXR xi for all i. If the preference is nonsatiated we denote x ÂR y when x ºR y and
there exists i with xi+1 ÂXR xi or 〈pi+1, xi+1 − xi〉 > 0 for (xi, pi) ∈ XR.
More concisely let X denote configuration space of all samples {(xi, pi) | xi ∈ XR (pi)}. The generalised
axiom of revealed preference (GARP) in its traditional form (Fostel et al. (2004)) says that there can not
exists a cycle {(xi, pi) | i = 0, . . . , q} ⊆ X with x0 = xq+1 and 〈pi+1, xi+1−xi〉 ≥ 0 unless 〈pi+1, xi+1−xi〉 = 0.
It is known that GARP is necessary and sufficient for the existence of a preference order º on X such that
x º y whenever x ºR y and x Â y whenever x ÂR y (Kannai (2004)). That is there is an order º rationalizes
X .
A geometric characterisation of the demand functions exists when we know the utility function u (Eberhard
and Crouzeix (2007)). Assuming the standard ”non-satiation” assumption any optimal value x of (1) satisfies
〈x, p〉 = 1 and if u (x) = v (p) we have from (1) that if 〈p′, x〉 ≤ 1 =⇒ v(p′) ≥ v(p). Thus we may write

Xu(p) =
{
x ∈ Rn

+ | 〈x, p〉 = 1 and 〈p′ − p, x〉 ≤ 0 implies v(p′) ≥ v(p)
}

. (3)

Alternatively, using the contrapositive we may denote

S̃v(p) :=
{
p′ ∈ Rn

+ | v(p′) < v(p)
}

then x ∈ Xu(p) iff 〈x, p〉 = 1 and ∀p′ ∈ S̃v(p) =⇒ 〈p′ − p,−x〉 < 0 (4)

In (Eberhard and Crouzeix (2007)) we study functions v : S→R such that closure of the (convex) strict
level sets S̃ (as defined in (4)) satisfies S̃v(p) = Sv(p) := {p′ | v(p′) ≤ v(p)} and for which int S̃v(p) 6= ∅ if
v (p) > min v. We call these solid pseudo–convex functions. For solid pseudo–convex function we have a
characterisation

x ∈ [−Nv(p)] ∩ {x | 〈x, p〉 = 1} ≡ Xu(p), (5)

where the normal cone to the level set S̃v(p) at p is defined as Nv(p) :=
{

y | 〈p′ − p, y〉 ≤ 0 for all p′ ∈ S̃v(p)
}

.
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We see that the demand correspondence essentially supplies differential data regarding the orientation of the
boundary of the level set (that is the indifference curves). We need to reconstruct these level curves from
this data. For a finite data set this may be achieved using the Afriat procedure, which fits a concave utility
or a convex indirect utility.

1.1 The SARP and Afriat Utility

Revealed preference theory contains a number of competing notions some of which have only recently been
shown to be essentially equivalent (Eberhard et al. (2009a)). One that features very early in the history of
revealed preference theory is the following: The strong axiom of revealed preferences (SARP) (Houthakker,
1950) holds if: for all p0, . . . , pq ∈ Rn such that there exist xi ∈ Xu(pi) with

〈pi, xi+1 − xi〉 ≤ 0 for i = 0, . . . , q − 1

and xj 6= xi for i 6= j then we have 〈pq, xq − x0〉 ≤ 0 for all xq ∈ Xu(pq)\ {0}.
It is shown in (Eberhard et al. (2009a)) that GARP holds iff SARP holds. SARP is actually closely
related to the concept of cyclical pseudo–monotonicity. A multifunction Γ : D ⇒ Rn is called cyclically
pseudo–monotone of order q if for all i = 0, . . . , q − 1 and (pi, xi) ∈ Graph Γ, with xi 6= 0, we have

〈pi, xi+1 − xi〉 ≥ 0 implies 〈pq, x0 − xq〉 ≤ 0 for all xq ∈ Γ(pq). (6)

A relation which is cyclically pseudo-monotone of all orders q ≥ 1 is called cyclically pseudo-monotone
(CPM) and maximally cyclically pseudo–monotone if its graph is not properly contained in the graph of any
other cyclically pseudo monotone relation ∆ with the same effective domain dom ∆ := {x ∈ D | ∆(x)\{0} 6=
∅} = dom Γ. A cyclically pseudo-monotone relation of order q = 1 is called pseudo–monotone (PM) with
maximality defined analogously. Clearly SARP corresponds to −Xu being CPM. When −Xu is pseudo–
monotone then Xu satisfies the classical weak axiom of revealed preference theory (WARP).

Definition 1 Placing I = {1, . . . ,m} let

aij := 〈pi, xj − xi〉 for i, j ∈ I and
bij := 〈xi, pj − pi〉 for i, j ∈ I

We refer to the following inequalities as the direct Afriat inequalities

φj ≤ φi + λiaij for i, j ∈ I. (7)

We refer to the following inequalities as the indirect Afriat inequalities

ψj ≥ ψi − µibij for i, j ∈ I. (8)

We note that SARP≡GARP holds for Xu iff there is a feasible solution to the direct Afriat inequalities
(in (φi, λi) for i, j ∈ I, see (Fostel et al. (2004))). By the symmetric duality between the direct and
indirect utility we also have SARP≡GARP holds for Xu iff there is a feasible solution to the indirect Afriat
inequalities (in (ψi, λi) for i, j ∈ I.

Definition 2 Given a set of data ({xi, pi})i∈I and a set of direct parameters {(φi, λi)}i∈I we define the
direct Afriat utility as:

u (x) := min {φ1 + λ1〈p1, x− x1〉, . . . , φm + λm〈pm, x− xm〉} . (9)

Given a set of data ({xi, pi})i∈I and a set of indirect parameters {(ψi, µi)}i∈I we define an indirect Afriat
utility as:

v (p) := max {ψ1 − µ1〈x1, p− p1〉, . . . , ψm − µm〈xm, p− pm〉} . (10)

This brings us to the classical work of (Afriat (1967)) in the form given by (Fostel et al. (2004)). We
have GARP necessary and sufficient for the ability to fit an Afriat utility that induces the same preference
structure. When a strictly increasing, continuous function k : R → R exists such that k ◦ v is convex we say
v admits a convex representation (and similarly for u admitting concave representation).
As GARP holds iff SARP holds and since any data set sampled from a valid solid, pseudo–concave utility
function leads to a finite data set that satisfies GARP (Eberhard and Crouzeix (2007)) it follows that
a concave Afriat utility may be fitted. A simple constructive algorithmic proof is given in (Crouzeix et
al. (2009)). This is true even if the initial underlying pseudo–concave utility has no equivalent concave
representation (such utilities do exist). From an approximation perspective this is an important observation
we have made. Symmetrically a convex indirect utility may also be fitted to such a finite samples even when
the original indirect utility is not convex nor has a convex representation.
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1.2 Fitting the Afriat Utility to Data

As noted in the last section one may progressively fit an Afriat direct (indirect) utilities as the size of the
data set grows despite the possibility that the underlying true utility is not itself concave (convex).
Here we sample increasingly larger data sets from a known Cobb-Douglas utility (plotted in the first figure)
and sequentially fit an Afriat utility using the methods of (Kocoska et al. (2009)). One may form a best fit
optimization problem U-NLP by using the Afriat inequalities plus the constraint λ ≥ 1 with an objective
min(φ,λ)

∑
i λi. Once the best values for (φ, λ) are generated we may plot the level curves of the fitted Afriat

utility. We generate a finite demand sample for a randomly generated set of prices. We plot in the following
diagrams the commodities generated and the level curves of the fitted Afriat utilities for increasing sample
sizes k = 40, 60. We do this for a commodity bundle of size two so that we may plot level set diagrams
illustrating the convergence in action.
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Figure 1. The original Cobb-Douglas and two Afriat utilities fitted to samples of size k = 40, 60.

2 CONVERGENCE NOTIONS AND MAIN RESULTS

As noted in last section we can always fit an Afriat utility to any finite set of data sampled from any solid,
pseudo-concave utility. Thus for each data set {(xi, pi)}m

i=1 we can obtain a set of convex, polyhedral, level
curves of an indirect utility vm specifying a normal cone Nm (p) with that property that for each i = 1, . . . , m
we have xi ∈ Nm (pi).
In the following analysis we will have need to use a number of results taken from variational analysis. A
sequence of extended-real-valued functions {fm}∞m=0 epi-converges to an extended-real-valued function f if
both of the following hold:

e- lim sup
m

fm (x) := min
{xm→x}

lim sup
m

fm (xm) ≤ f (x) and (11)

e- lim inf
m

fm (x) := min
{xm→x}

lim inf
m

fm (xm) ≥ f (x) . (12)

The minimum is taken over all possible convergent sequences xm → x. There are many equivalent character-
isation of epi-convergence (see Rockafellar and Wets (1998)) one being the set convergence of the epigaphs
epi fm := {(x, α) | α ≥ fm (x)} to the epigraph epi f . The relevance of epi–convergence to utility approxi-
mation is brought into focus by the following fact: A sequence of functions epi-converges if and only if their
level sets converges as sets. As level sets correspond to indifference curves this is exactly the behaviour we
seek from such an approximation.
A sequence of set valued function {Γm}∞m=1 graphically converges to Γ iff both of the following hold:

Γ (x) ⊆
⋃

{xm→x}
lim inf

m
Γm (xm)

where lim inf
xm→x

Γm (xm) := {y | ∃ym ∈ Γ (xm) with ym → y} and

Γ (x) ⊇
⋃

{xm→x}
lim sup

m
Γm (xm)

where lim sup
xm→x

Γm (xm) := {y | ∃mk →∞ and ∃ymk
∈ Γ (xmk

) with ym → y} .
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There exists theorems that link epi–convergence of a sequence of convex functions {fm}∞m=1 to f and graphical
convergence of the subdifferential ∂fm (x) := {z ∈ Rn | fm (y)− fm (x) ≥ 〈z, x〉, for all y ∈ Rn}. Indeed
epi–convergent sequences of convex functions must be yield a convex function f for which case we can also
assert that the graphical limit of the subdifferential satisfies

∂f (x) = g- lim
m→∞

∂fm (x) .

We connect with our demand correspondence by observing that the normal cone to the level set Sfm (x)
correspond to Nfm (x) = cone ∂fm (x) := ∪λ>0∂fm (x). These observations allow a comprehensive treatment
of the convex case to be carried out using known standard results from variational analysis. This we present
in the next section.

2.1 The Case of a Concave Utility

What might happen as the sampling size increases? We can still fit a concave utility to each finite sample as
the sample size m increase. Each time we obtain the data {(φm

i , λm
i )} and as before we have fitted φ0 = u0 as

a nominal fixed value. Is there some sense via which these approximate utilities converge to a function that
can be rightfully called the underlying utility function. The next results gives some criteria for this to occur.
In effect we provide here reasonable conditions that ensure convergence of the concave Afriat direct utilities
to a concave direct utility function that may validly be associated with a indirect utility and therefore be
deemed as a candidate for the underlying ”real” utility function that rationalises the preference structure.
These results improve on those of (Kannai (2004)) in that we provide the variational sense in which these
approximations converge in both the primal and dual sense. The conditions given are merely sufficient for
a desirable convergence. Recall that the relative interior ri C, of a convex set C, corresponds to the interior
relative to the affine hull of C. We denote the convex hull of set C by co C. Denote the conjugate of a
convex function f by f∗ (x) := supy [〈x, y〉 − f (y)].

Theorem 3 ((Eberhard et al. 2009a) ) Suppose we have an increasing family of subsets

Sm := {(xi, pi) , i = 1, . . . , m} ⊆ X

where Dm := {xi | i = 1, . . . , m} with D := ∪mDm dense in coD, with int coD 6= ∅, 0 ∈ coD such that each
Sm satisfies GARP. Suppose we have fitted the associated family of concave direct utilities {um}∞m=1 with
φ0 = u0 (a nominal fixed value) and parameters (φm

i , λm
i ) with λi ≥ 1 for i = 1, . . . ,m. Suppose in addition

that the family of sets
Rm := co {λm

i pi | i = 1, . . . , m} ,

are uniformly bounded and converging to a bounded set R i.e. lim supm Rm = R.

1. Then {um}∞m=1 epiconverges to a proper concave upper semi-continuous, utility function u.

2. Let vm (p) := maxy {um (y) | 〈y, p〉 ≤ 1} and v (p) := maxy {u (y) | 〈y, p〉 ≤ 1}. Suppose we have the
following sufficient condition holding

∃ (γ, µ) ∈ R++ ×
(
S1 ∩ (l1)++

)
such that

γp =
∑

i

µiλipi and γp ∈ − ri dom (−u)∗ , (13)

where S1 :=
{{µi}∞i=1 ∈ (l1)+ := {{µi}∞i=1 ∈ l1 | µi ≥ 0} | ∑i µi = 1

}
and (l1)++ := {{µi}∞i=1 ∈ l1 | µi > 0}.

Then {vm} converges pointwise to the associated indirect utility v on Rn
+\ {0}.

3. If −u is a proper, solid, pseudo-convex function then u has the property that x ∈ Xu (p) for p ∈
cone co {pi, i = 1, 2, . . . }∩ Rn

+ iff −p ∈ cone ∂ (−u) (x) and 〈x, p〉 = 1 for some x ∈ D.

4. In particular

g- lim sup
m

Xum
(p) = Xu (p) , if p ∈ cone co {pi, i = 1, 2, . . . } ∩Rn

+\ {0} (14)

and so if we have xm → x and pm ∈ cone ∂ (−um) (xm) with pm → p ∈ Rn
+\ {0} and 〈xm, pm〉 = 1

then x ∈ Xu (p).
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2.2 The Case of a Pseudo-Convex Indirect Utility

When such conditions that ensure a concave limiting utility fail we can still assert that the sequence of fitted
Afriat utilities provide us with a sequence of level curve families. This may be done by first defining for each
m the strictly increasing, continuous function via the fitted indirect Afriat utility vm (p) i.e.

km (t) := vm (p1t) where t > 0.

We then renormalise our Afriat utilities to produce another sequence of equivalent utilities

v̂m (p) := −k−1
m (vm (p))

which is the composition of a convex function on Rn and a concave increasing mapping on R. Now p1 lies on
the level curve {p | v̂m (p) = −1} for each m and also τ 7→ v̂m (τp1) = −τ is finite. Note that dom v̂m = Rn

+

for all m and as vm is a supremum function we have the convex subdifferential

∂vm (p) = co {−µixi | vm (p) = ψm
i − µm

i 〈xi, p− pi〉} .

As km strictly decreasing continuous then −k−1
m is strictly increasing and so the normal cone to the level set

Sm (p̄) := {p | v̂m (p) ≤ v̂m (p̄)} is given by

Nm (p̄) = cone ∂v̂m (p̄) . (15)

We may make the following change of origin and basis of the local coordinate system around p1. Consider
the direction d = p1/ ‖p1‖ of strict monotonicity of v̂m to be the nth vector in the canonical basis and p1

the origin. Now a neighbourhood of p1may be taken to have the form V = Y × T where Y and T are closed
convex neighbourhoods of the origin in Rn−1 and R respectively and the resultant function we will denote
by t 7→ fm(y, t) is decreasing. Set λ̄ = v̂m(p1) ≡ fm(0, 0). Let λ0 = inf{fm(y, t) | (y, t) ∈ Y ×T}. For λ > λ0

define

gm(y, λ) = inf{t | fm(y, t) ≤ λ}, λ ∈ (λ0, +∞) (16)
for which Nfm (y, t) = cone {(z,−1) | z ∈ ∂ygm (y, λ) for λ = fm (y, t)} . (17)

6

-

�

Direction of decreasing f

Level Cures of f

~ y

t

p2

p1

Figure 2. The new axis (y, t) are obtained by rotating the original axis for p.

Suppose fm is lower semi–continuous in t and gm defined as in (16) is continuous in λ then we have for
(y, t) ∈ Y × T that

fm(y, t) = sup {λ | gm(y, λ) > t} . (18)

Roughly speaking, it can be said that a monotonic decreasing property in λ and a continuity property of
λ 7→ g (y, λ) for any such family of proper, convex level set functions {g (·, λ)}λ∈Λ correspond directly to a
solid, pseudo–convex function f , as defined via the transformation (18), being strictly decreasing in t. Now
suppose we have the epi-convergence of the convex functions {gm (·, λ)}λ∈Λ. As epi gm (·, λ) corresponds to
the indifference curve at level λ = fm (0, t) = −t, convergence of epi gm (·, λ) corresponds to convergence of
level curves, precisely the epi-convergence of {fm}∞m=1! Epi–convergence satisfies a compactness property:
From any sequence of functions {gm}∞m=1 we may extract an epi-convergent subsequence and in this manner
we may extract an epi–convergent subsequence from {fm}∞m=1. Now we may use graphical convergence
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of subdifferentials in (17). These considerations allow us to prove the following result that improves on
(Crouzeix and Rapcsák (2005)) which treats only the case when f is differentiable. This theorem asserts
the existence of a utility function based only on the existence of a suitable demand correspondence, giving a
positive answer to the problem of revealed preference. The following is taken from (Eberhard et al. (2009b))
and to the authors knowledge this result is the only one of its kind in the literature.

Theorem 4 ((Eberhard et al. 2009b) ) Let Γ (p) := −cone X (p) where X is the demand correspon-
dence. Suppose Γ : D ⇒ Rn is cyclically pseudo–monotone (i.e. SARP holds for X) with closed graph and
with convex, conic images on a closed, bounded set D ⊆ domΓ such that int D = D. Suppose in addition
there exists a d ∈ Rn such that 〈x, d〉 < 0 for all x ∈ Γ(p)\{0} and p ∈ D. Then there exists a solid, pseudo-
convex indirect utility function v : D → R such that p ∈ arg min {v(q) | 〈x, q〉 ≤ 1} whenever x ∈ X(p)
and

X (p) = −Nv (p) ∩ {x | 〈x, p〉 ≤ 1} for all p ∈ intD.

The proof is constructive in the sense that we approximate v via a subsequence of renormalised Afriat indirect
utilities {v̂mk

}∞k=1. Moreover the demand correspondence is approximated in the same fashion as given in
(14) and we may assert Γ and Nv are simultaneously maximally pseudo- and cyclically pseudo–monotone.
In particular if we only have access to a countably dense set of values X := {(xi, pi)}∞i=1 ⊆ GraphX then we
may write

X (p) =

[
lim sup

δ↓0
cone co X (Bδ (p) ∩ {pi}∞i=1)

]
∩ {x | 〈x, p〉 = 1} .
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