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Abstract

The estimation of the daily integrated variance of the returns of financial assets is important task for pricing
the derivatives of financial asset and risk management. It is well known that a realized variance (RV) is the
simplest estimator of the daily integrated variance (IV). It is important that RV is badly biased estimator where
the equilibrium price process is contaminated with the market microstructure noise. The microstructure noise is
induced by various market frictions such as bid-ask bounces and the discreteness of price changes. There are three
approaches to cope with the noise contamination: (i) use of the returns on the proper length of intervals based on
optimal sampling frequency proposed by Bandi and Russell(2008a), (ii) subsampling and bias correction proposed
by Zhang et al.(2005) and (iii) kernel estimation by Barndorff-Nielsen, et al.(2008). McAleer and Medeiros(2008)
extensively review the recent RV literature. The key which ensures unbiasedness and consistency of IV estimator in
the presence of market microstructure noise is the time dependence structure of the noise. All three approaches
mentioned above eventually require the knowledge of the dependence structure. To identify the dependence
structure, Ubukata and Oya(2009) have proposed consistent cross and autocovariance estimators and test statistics
for the statistical significance. In this study, we propose the selection procedure of two time scales for TSRV by
Aı̈t-Sahalia et al.(2006) under general noise dependence structure applying the statistical inference proposed by
Ubukata and Oya(2009). Further an alternative bias corrected IV estimator is also proposed.

We conduct a series of Monte Carlo simulation to compare the bias and root mean squared error of the proposed
estimator with TSRV and confirm that the proposed estimator has relatively small MSE and the proposed selection
method of two time scales works well.

Denote the extended TSRV and its bias adjusted one with the selected lags (Ĵ , K̂) through the procedure proposed
by Ubukata and Oya (2009) asRVĴ,K̂ andRV

(adj)

Ĵ,K̂
, respectively.RV

(bc)

K̂
is the proposed bias corrected estimator

with the selected laĝK. In the AR(1) noise dependence case, the empirical distributions ofRVĴ,K̂ andRV
(adj)

Ĵ,K̂

are skew to the right. On the other hand, the skewnesses of the empirical distribution fori.i.d. and MA noise
dependence cases are not severe. The empirical distribution of the proposed estimatorRV

(bc)

K̂
is closer to symmetric

than others when the noise dependence is strong.

Table 1.Relative bias and RMSE of estimators

Bias RMSE

noise RVĴ,K̂ RV
(adj)

Ĵ,K̂
RV

(bc)

K̂
RVĴ,K̂ RV

(adj)

Ĵ,K̂
RV

(bc)

K̂

AR: ρ = −0.8 -0.131 0.035 0.008 0.326 0.366 0.259
AR: ρ = −0.4 -0.064 0.009 -0.006 0.208 0.218 0.214
AR: ρ = 0.4 0.093 0.176 0.035 0.337 0.373 0.290
AR: ρ = 0.8 0.123 0.346 0.078 0.548 0.694 0.390
i.i.d. -0.077 -0.020 -0.009 0.163 0.141 0.212
MA(1) -0.107 -0.036 -0.008 0.180 0.166 0.200
MA(2) -0.167 -0.090 -0.011 0.221 0.201 0.204
MA(3) -0.194 -0.122 -0.033 0.235 0.212 0.217

The biasand RMSE of estimators
are reported in Table 1. The
bias ofRV

(bc)

K̂
is generally smaller

than those ofRVĴ,K̂ andRV
(adj)

Ĵ,K̂
.

The RMSE is almost same for
all cases except the strong noise
dependence case. These simulation
result suggests that the extended
TSRV and its bias adjusted one with
selected (̂J , K̂) and the proposed
estimatorRV

(bc)

K̂
are robust to the

dependence of microstructure noise.
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1. INTRODUCTION

The estimation of the daily integrated variance of the returns of financial assets is important task for pricing the
derivatives of financial asset and risk management. It is well known that a realized variance (RV) is the simplest
estimator of the daily integrated variance (IV). The most important fact about the properties of RV is that RV is
badly biased estimator where the equilibrium price process is contaminated with the market microstructure noise.
The microstructure noise is induced by various market frictions such as bid-ask bounces and the discreteness of
price changes. There are three approaches to cope with the noise contamination: (i) use of the returns on the proper
length of intervals based on optimal sampling frequency proposed by Bandi and Russell(2008a), (ii) subsampling
and bias correction proposed by Zhang et al.(2005) and (iii) kernel estimation Barndorff-Nielsen, et al.(2008).
McAleer and Medeiros(2008) extensively review the recent RV literature. The key which ensures unbiasedness and
consistency of estimator of IV in the presence of microstructure noise is the time dependent structure of the noise.
To identify the dependence structure, Ubukata and Oya(2009) have proposed consistent cross and autocovariance
estimators and test statistics for the statistical significance.

In this study, the selection procedure of time scales for Two Scales RV (TSRV) by Aı̈t-Sahalia et al.(2006) is
proposed under general noise dependence structure. Further an alternative bias corrected estimator of IV is also
proposed. The remainder of this paper is organized as follows. We present the framework of the price process
and market microstructure noise in section 2. In section 3, realized variance and related estimator are given. After
giving a brief review of the autocovariance estimator of microstructure noise proposed by Ubukata and Oya(2009),
we provide the selection two scales for TSRV and an alternative estimator of IV in section 4. In section 5, we
examine the finite sample performance of the proposed selection procedure and new estimator under the general
noise dependence through Monte Carlo simulation. Some concluding remarks are given in section 6.

2. PRICE PROCESS AND MICROSTRUCTURE NOISE

The most basic assumption for the logarithmic equilibrium price process of an financial asset is that the price process
follows a continuous semi-martingale processdP ∗(t) = µ(t)dt + σ(t)dW (t) whereP ∗(t) is the logarithmic
equilibrium continuously compounded intra-daily price,W (t) is a standard Brownian motion,µ(t) andσ(t) > 0
are bounded measurable functions. The diffusion termσ(t) is to be estimated as in the form of integrated variance
over a fixed interval[0, T ]

IV = ⟨P ∗, P ∗⟩T =
∫ T

0

σ2(t)dt (1)

using observed logarithmic price of the asset fort ∈ [0, T ]. T represents the trading hours per day. During the
trading hours on one day, it is usually that the trend of the price process is quite small and the drift termµ(t) is
almost zero. Since our interest is estimating the daily integrated variance (1), we assume thatµ(t) is set to be
zero. Suppose that the price is observed at the discrete timest0 = 0 < t1 < t2 < · · · < tn = T . ti represents
the i-th transaction time. The length of a interval between the(i − 1)-th andi-th transaction times is defined as
∆ti = ti − ti−1. ∆ti = T/n when we consider the regular sampling scheme, on the other hand,∆ti ̸= ∆tj , for
i ̸= j for the non-regular sampling scheme.

To incorporate the effect of market microstructure noise, we assume that the observed logarithmic price process
P (t) consists of the equilibrium continuously compounded intra-daily price processP ∗(t) which is unobservable
and the noise processη(t) which is caused by the market microstructure effects as follows

P (t) = P ∗(t) + η(t). (2)

Thei-th transaction price isP (ti) and thei-th intraday return is defined asri = P (ti) − P (ti−1).

It is natural to consider that the market microstructure noise is serially dependent random variable since the noise is
related to bid-ask bounce, the clustering of order flows and other market imperfection. Thus we make the following
assumptions for the microstructure noise.

Assumption 1 Market microstructure noise: Suppose (a){η(t)} is a sequence of random variables with zero
mean, (b) the noise process is covariance stationary with autocovariance function, which has finite dependence in
the sense that:

γη(ℓ) = E[η(t)η(t − ℓ)] = 0, for all | ℓ |> m

wherem is a finite positive integer, (c) there exists some positive numberβ > 1 that satisfiesE
∣∣η(t)η(s)

∣∣4β
< ∞

for all t, s and (d) the noise process is independent of the equilibrium price process.
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For (d), even if the noise is correlated with the equilibrium price, the effect of the dependence is dominated by the
variation of the noise as the number of high-frequency observations increases. Hansen and Lunde(2006) suggest
that the independence assumption (d) does not statistically damage the analysis of asset prices with high trading
intensities.

3. REALIZED VARIANCE AND RELATED ESTIMATORS

3.1. Realized Variance

The most popular estimator of (1) is a realized variance which is defined as the sum of squared returns given by

RV =
n∑

i=1

r2
i =

n∑
i=1

(P (ti) − P (ti−1))2. (3)

Given intervalsIi = (ti−1, ti] for all i, the expectation conditional on the stochastic arrival times is defined as
EI [ · ]. The conditional expectation of (3) is written as

EI [RV ] =
n∑

i=1

EI [(r∗i + η(ti) − η(ti−1))2] =
n∑

i=1

EI [(r∗i )2] + 2nγη(0) − 2
n∑

i=1

γη(∆ti) (4)

wherer∗i = P ∗(ti)−P ∗(ti−1). It is straightforward to show that the varianceγη(0) and the sum of autocovariances∑n
i=1 γη(∆ti) bring bias to (3). The total bias is2n(γη(0) − γη(T/n)) for the regular sampling scheme. In what

follows, we assume that the sampling scheme is regular and∆ti = 1, i = 1, . . . , n for simplicity.

3.2. Two Scales Realized Variance

Two Scales Realized Variance (TSRV) by Zhang et al.(2005) which is unbiased when the noise is independent.
Denote the original grid of observation times asG = {t0, t1, . . . , tn}. G is partitioned intoK nonoverlapping
subgrids,G(j)

K , j = 1, . . . ,K, such thatG = ∪K
j=1G

(j)
K , where G(j)

K ∩ G(ℓ)
K = ϕ for j ̸= ℓ. Since

we assume the sampling scheme is regular, thej-th nonoverlapping subgrid can be represented asG(j)
K =

{tj−1, tj−1+K , tj−1+2K , . . . , tj−1+njK} for j = 1, . . . , K wherenj is the integer makingtj−1+njK the last

element in the subgridG(j)
K . Then the realized variance for the subgridG(j)

K is written as

RV
(j)
K =

nj∑
i=1

(P (t(j−1)+iK) − P (t(j−1)+(i−1)K))2. (5)

Let RV (all) be the realized variance for the full gridG. Then TSRV by Zhang et al.(2005) is represented as

RVK =
1
K

K∑
j=1

RV
(j)
K − n̄

n
RV (all) (6)

wheren̄ =
∑K

j=1 nj/K = (n − K + 1)/K. The first term of (6) is an average ofRV
(j)
K for the subgridG(j)

K ,
j = 1, . . . , K and is an biased estimator ofIV . In the case of the independent noise, the second term of (6) is the
bias correction term since the bias in the first term is2n̄γη(0) andRV (all)/(2n) is a consistent estimator ofγη(0).
The refinement of (6) to remove the finite sample bias is also given in Zhang et al.(2005) as

RV
(adj)
K =

(
1 − n̄

n

)−1

RVK . (7)

Although these two scales realized variances are unbiased and consistent estimators ofIV under the independent
noise assumption, the favorable features are lost when the noise is not independent.

3.3. Extended Two Scales Realized Variance

Aı̈t-Sahalia et al.(2006) extend the TSRV to allow for dependent market microstructure noise as follows. The first
term of (6) can be rewritten in the form of the average lagK realized variance as defined in Aı̈t-Sahalia et al.(2006)
for regular sampling scheme

RV
(avg)
K =

1
K

K∑
j=1

RV
(j)
K =

1
K

n−K∑
i=0

(P (ti+K) − P (ti))2. (8)
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It is possible to use lagJ instead of lagK for 1 ≤ J < K ≤ n. Using two different lagsJ andK, the extended
TSRV is defined as

RVJ,K = RV
(avg)
K − n̄K

n̄J
RV

(avg)
J (9)

wheren̄J = (n − J + 1)/J , n̄K = (n − K + 1)/K, 1 ≤ J < K ≤ n andK = o(n).

The main difference from TSRV appears in the second term of (9) which is a bias correction term. It is easy to see
that the bias ofRVJ,K comes from the autocovariancesγη(J) andγη(K) of the noise as follow

2n̄K(γη(ti+J − ti) − γη(ti+K − ti)) = 2n̄K(γη(J) − γη(K)). (10)

These autocovariancesγη(J) andγη(K) become negligible if lagsJ andK are selected large enough. Since we
have assumed that the noise process ism-dependent in Assumption 1, we selectJ = m + 1 andK = O(n2/3) as
in Aı̈t-Sahalia et al.(2006). A finite sample correction of the extended TSRV is given as

RV
(adj)
J,K =

(
1 − n̄K

n̄J

)−1

RVJ,K . (11)

4. SELECTION LAGS (J , K) AND ALTERNATIVE ESTIMATOR

The extended TSRV is suitable estimator of IV when the independent noise assumption is hardly acceptable. As
described in previous section, however, we have to choose proper lagsJ andK. Although Äıt-Sahalia et al.(2006)
argue that the extended TSRV is robust for the selection of lags(J,K), the estimator is affected by the selection of
J as we will see in section 5.2.

In this section, we propose the method which makes it possible to select a properJ using the testing procedure
proposed in Ubukata and Oya(2009) and an alternative IV estimator which incorporates a different bias correction
method from the extended TSRV.

4.1. Autocovariance Estimator of Microstructure Noise

Ubukata and Oya(2009) propose an unbiased and consistent estimator of autocovarianceγη(ℓ) of the market
microstructure noise and derive the asymptotic distribution. The test statistic of the null hypothesisγη(ℓ) = 0
is applied to measure the dependence of the market microstructure noise process. Suppose the threshold value of
noise dependence asm, that is,γη(m + 1) = 0 andγη(m) ̸= 0. The threshold valuem can be determined through
the test statistic given in Ubukata and Oya(2009, section 3.2).

To obtain unbiased estimator ofγη(ℓ), we constructZ(±)
ℓ,ij for all i, j such thatℓ = tj−1 − ti using the selected

threshold valuem as follows

Z
(±)
ℓ,ij = r

(−)
i r

(+)
j = (P (ti) − P (t(−)

i−1))(P (t(+)
j ) − P (tj−1)) (12)

wheret
(+)
j is the first transaction time, which followstj subject tot

(+)
j − ti > m, andt

(−)
i−1 is the last transaction

time, which is followed byti−1 subject totj−1 − t
(−)
i−1 > m. Then we haveE[Z(±)

ℓ,ij ] = −γη(ℓ) for all i, j such that

ℓ = tj−1 − ti and givenℓ. Let {Z(±)
ℓ,k }Nℓ

k=1 be a sequence that arrangesZ
(±)
ℓ,ij satisfyingℓ = tj−1 − ti in ascending

order of indexi. Nℓ is the number of observations in the sequence. The unbiased autocovariance estimator of the
microstructure noise is naturally constructed using the sample mean of{Z(±)

ℓ,k }Nℓ

k=1.

Autocovariance Estimator (Ubukata and Oya, 2009): The autocovariance estimator of the microstructure noise
and its asymptotic distribution are given as

γ̂η(ℓ) = − 1
Nℓ

Nℓ∑
k=1

Z
(±)
ℓ,k , N

1/2
ℓ (γ̂η(ℓ) − γη(ℓ)) a→ N(0, ω2

ℓ ) (13)

whereω2
ℓ = limNℓ→∞ NℓE[(γ̂η(ℓ) − γη(ℓ))2].

The test statistic to find whetherγη(ℓ) = 0 is given in Ubukata and Oya(2009, corollary 2). We denote the test
statistic asτ∗

η (ℓ). To save space, we omit its explicit form. See Ubukata and Oya(2009) for details.
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4.2. Selection Lags (J , K)

First, we test whetherγη(1) = 0 through the test statisticτ∗
η (ℓ). We conclude that the microstructure noise is

uncorrelated when the null is not rejected. If the null is rejected, we test whetherγη(2) = 0. We continue to test
γη(ℓ) = 0 until the null is not rejected. We denote the distanceℓ where the null hypothesisγη(ℓ) = 0 is not rejected
the first time asĴ for the extended TSRV.

The optimal choice of lagK is given in Zhang et al.(2005) under thei.i.d. noise assumption, however it is still
open question under the dependent noise assumption. We adopt a simple approach to settle this question. The
original grid of observation times isG = {t0, t1, . . . , tn} as defined in previous section. Now we define a following
new subgridGĴ = {t0, tĴ , t2Ĵ , . . . , t[n/Ĵ]} whereĴ is the selected lag which is the estimate of the threshold value
of the noise dependence through the test statisticτ∗

η (ℓ). It is reasonable to suppose that the microstructure noise

{ η(tiĴ) }[n/Ĵ]
i=0 is an uncorrelated random sequence. By applying the method proposed in Zhang et al.(2005)

to the sequence of the observed transaction price{ P (tiĴ) }[n/Ĵ]
i=0 , we can find the optimalK. In what follows,

the extended TSRV with selected lags (Ĵ , K̂) and its bias adjusted version are defined asRVĴ,K̂ andRV
(adj)

Ĵ,K̂
,

respectively.

4.3. Alternative Bias Corrected Estimator

In this subsection, we provide an alternative IV estimator using the autocovariance estimator (13) of the market
microstructure noise for the bias correction as follow

RV
(bc)
K = RV

(avg)
K − 2n̄K γ̂η(0). (14)

The unbiasedness and the consistency ofRV
(bc)
K are immediately established from the unbiasedness and consistency

of the autocovariance estimator (13) and the result given in Zhang et al.(2005).

5. MONTE CARLO SIMULATION

5.1. Simulation Design

We conduct a series of Monte Carlo simulation to see the effect of the selection lags (J , K) for the extended TSRV
and to compare the properties of the estimator (14) with the extended TSRV where the microstructure noise is
dependent. The data generating process ofP ∗(t) is the same as in Zhang et al.(2005).

dP ∗(t) = (0.05 − ν(t)/2)dt + σ(t)dB(t)

dν(t) = 5(0.04 − ν(t))dt + 0.5ν(t)1/2dW (t), ν(t) = σ2(t)

where the correlation between the two Brownian motionsB andW is set to be -0.5. We generate 10,000 sample
paths of the process by Euler scheme at time interval∆t = 1 second.T = 1 day and a day consists of 6.5 hours
of open trading = 23400 sec. We observe the price discretely with a market microstructure noise. In the simulation,
the time interval of observation is set to be 5 seconds, that is,t0 = 0, t1 = 5, . . . , t4680 = 23400. Since our interest
is in the case of dependent microstructure noise, we consider a variety of different dependent patterns represented
by following autoregressive model and moving average model for the noise process

AR(1) : η(ti) = ρ η(ti−1) + ε(ti), MA(3) : η(ti) = ε(ti) +
3∑

s=1

θsε(ti−s)

ρ = -0.8, -0.4, 0.0, 0.4, 0.8 for AR(1),(θ1, θ2, θ3) = (-0.6, 0, 0) for MA(1), (-0.6, -0.3, 0) for MA(2) and (-0.6, -0.3,
-0.15) for MA(3). The value of the variance of the market microstructure noiseE[η(t)2] should be selected carefully.
The effect of the microstructure noise is negligible whenE[η(t)2] selected too small. Hansen and Lunde(2006)
report that theNoise to Signal Ratio (NSR)defined asE[η(t)2]/IV of stocks they examine in NYSE and NASDAQ
ranges from 0.0002 to 0.006. We setE[η(t)2] making the sample average ofNSR for simulated path is 0.004. The
observed price is given asP (ti) = P ∗(ti) + η(ti). In the following subsections, we examine the influence of lag
J selection on the extended TSRV withK = 50, 100, 200 and see the statistical properties of the selectedJ using
the test statisticτ∗

η (ℓ). Further, we compare the extended TSRV with selected lags (J , K), its bias-adjusted version
and the proposed estimator (14). These estimators are obtained on each simulated sample path.
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5.2. Influence of Lag Selection
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Figure 1.Effect of selectionJ on Extended TSRV with differentK

We estimate the integrated variance
using theRVJ,K andRV

(adj)
J,K with

J = 1, . . . , 40 and K= 50, 100,
200. The relative bias of estimators
which is the sample means of
(estimate − IV )/IV is given in
the first and third columns in Figure
1. The sample root mean squared
error (RMSE) ofestimate/IV is
given in the second and fourth
columns. The first and third rows
of Figure 1 show the bias and
RMSE for RVJ,K . The second
and fourth rows show those for
RV

(adj)
J,K . The horizontal axes are

J=1, . . . , 40. The models used for
the noise process are AR(1) with
ρ = −0.8 and 0.8,i.i.d and MA(1)
with θ=−0.8. It is clear that the
bias ofRV

(adj)
J,K becomes negligible

after J exceeds the threshold
value of noise dependence while
the bias of RVJ,K grows as J
increases. Although the bias
adjusted estimatorRV

(adj)
J,K works

well, the variance is affected by the
adjustment. This effect is captured
by RMSE.

It is important to select the lagJ for both RVJ,K andRV
(adj)
J,K appropriately because their RMSEs are strongly

depend on the lagJ even in the independent noise case. From the second and fourth columns of Figure 1, we find
that the influence of the selectionK is not severe on RMSE of the estimator once the lagJ is selected properly.

5.3. Performance of Lag Selection Procedure
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Figure 2.Empirical distribution of selectedJ usingτ∗
η (ℓ)

The selection of the lagJ is conducted by
testing whether the null hypothesisγη(ℓ) =
0 for ℓ > 0 as described in section 4.2. We
examine how the test statisticτ∗

η (ℓ) works
for selection of the lagJ . Figure 2 shows the
empirical distribution of selectedJ denoted
asĴ for the representative cases. The mode
of Ĵ for AR(1) with ρ = -0.8 and 0.8 are
8 and 6 when the serial dependence of the
noise is strong. On the other hand, those for
i.i.d., MA(1) and MA(2) cases are 1, 2 and
3 respectively. However, the mode of̂J for
MA(3) case is not 4. The selected number
for Ĵ=4 is the second largest. One possible
explanation for this is thatγη(2) andγη(3)
are small in MA(3) noise process used in this
experiment.

It seems reasonable to conclude that the test statisticτ∗
η (ℓ) works well as the criterion for the selection lagJ except

the small autocovariance case. Though we omit the result for the selection ofK by the procedure described in the
previous section, we find that the variance of the empirical distribution ofK̂ becomes larger as the noise dependence
increases.
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5.4. Comparison of Estimators

We have discussed three estimators of IV under the dependent microstructure noise assumption. In
this subsection, we examine the properties of these estimators.RVĴ,K̂ and RV

(adj)

Ĵ,K̂
are the extended

TSRV and its bias adjusted one with the selected lags (Ĵ , K̂). RV
(bc)

K̂
is the estimator proposed in the

previous section with the selected laĝK. In the AR(1) noise dependence case, the empirical distributions
of RVĴ,K̂ and RV

(adj)

Ĵ,K̂
with (Ĵ , K̂) are skew to the right. On the other hand, the skewness of the

empirical distribution fori.i.d. and MA noise dependence cases is not severe. The empirical distribution
of the proposed estimatorRV

(bc)

K̂
is closer to symmetric than others when the noise dependence is strong.

Table 1.Relative bias and RMSE of estimators

Bias RMSE

noise RVĴ,K̂ RV
(adj)

Ĵ,K̂
RV

(bc)

K̂
RVĴ,K̂ RV

(adj)

Ĵ,K̂
RV

(bc)

K̂

AR: ρ = −0.8 -0.131 0.035 0.008 0.326 0.366 0.259
AR: ρ = −0.4 -0.064 0.009 -0.006 0.208 0.218 0.214
AR: ρ = 0.4 0.093 0.176 0.035 0.337 0.373 0.290
AR: ρ = 0.8 0.123 0.346 0.078 0.548 0.694 0.390
i.i.d. -0.077 -0.020 -0.009 0.163 0.141 0.212
MA(1) -0.107 -0.036 -0.008 0.180 0.166 0.200
MA(2) -0.167 -0.090 -0.011 0.221 0.201 0.204
MA(3) -0.194 -0.122 -0.033 0.235 0.212 0.217

The bias and RMSE of estimators
are reported in Table 1. The
bias of RV

(bc)

K̂
is generally smaller

than those ofRVĴ,K̂ and RV
(adj)

Ĵ,K̂
.

The RMSE is almost same for
all cases except the strong noise
dependence case. These simulation
result suggests that the extended
TSRV and its bias adjusted one with
selected (̂J , K̂) and the proposed
estimatorRV

(bc)

K̂
are robust to the

dependence of microstructure noise.

6. CONCLUDING REMARKS

This study provides a selection procedure of the lags (J , K) for the two scales realized variance with dependent
microstructure noise and an alternative bias corrected estimator using the variance estimator of microstructure
noise proposed in Ubukata and Oya(2009). From Monte Carlo simulation result, we find that there is evidence that
the proposed lag selection procedure works well and the proposed estimator is associated with relatively smaller
bias and RMSE. From these viewpoint, one may say that the proposed lag selection procedure and the proposed
estimator are useful for the analysis of actual transaction price data. In this study, we do not compare the kernel
type estimator. The kernel type estimator is more efficient than the estimators we examine in this study. However,
Bandi and Russell(2008b) show that this asymptotic property does not always provide satisfactory result for realistic
sample size for empirical analysis. Thus, it is interesting to compare the estimators examined in this study with the
kernel type estimator. We will take this matter in future study.
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