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Abstract: It is well known in the literature that the joint parameter estimation of the Smooth Autoregressive – 
Generalized Autoregressive Conditional Heteroskedasticity (STAR-GARCH) models poses many numerical 
challenges with unknown causes. This paper aims to uncover the root of the numerical difficulties in obtaining 
stable parameter estimates for a class of three-regime STAR-GARCH models using Quasi-Maximum Likelihood 
Estimator (QMLE). The paper also provides an easy and practical solution to alleviate the difficulties based on 
the findings.  
 
The paper is divided into two parts. The first part investigates the numerical difficulties in maximizing the 
likelihood function by using computer simulations. Previous studies in the literature have identified that the 
threshold values and the transition rates are particular difficult to estimate. In light of this view, simulated data 
based on a pre-defined three-regime STAR-GARCH model will be generated and the values of the associated 
likelihood functions will be computed against different threshold values and transition rates.  
 
The results show some interesting characteristics of the likelihood functions that have not been reported 
previously. Firstly, the log-likelihood functions of Exponential STAR-GARCH (ESTAR-GARCH) models tend 
to be flat around the global optimum near the true values of the transition rates. This explains the difficulties in 
estimating the transition rates by maximizing the log-likelihood functions using conventional gradient-based 
optimization algorithms. Secondly, the surfaces of the log-likelihood functions of the Logistic STAR-GARCH 
(LSTAR-GARCH) models tend to be lumpy in addition to being flat around the local optimums. This explains 
the sensitivity of QMLE relative to initial values. These findings have two implications: (i) the shapes of the log-
likelihood functions are determined mostly by the choice of transition functions and (ii) it may be possible to 
transform the shapes of the log-likelihood functions by re-parameterising the model. 
 
This paper proposes a simple re-parameterization of the three-regime STAR-GARCH models by transforming the 
transition rate parameter. The Monte Carlo simulation results show that the proposed method can alleviate the 
overall flatness and lumpy flatness of the log-likelihood functions for both LSTAR-GARCH and ESTAR-
GARCH. These show promising signs in reducing estimation difficulties when jointly estimating the model 
parameters. Moreover, the results also open new channels for uncovering the statistical and structural properties 
of the three-regime STAR-GARCH model.  
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1. INTRODUCTION  

The literature of nonlinear time series analysis has been growing rapidly in the last two decades. Interestingly, the 
literature focuses mainly on regime-switching models, such as the Smooth Transition Autoregressive (STAR) 
model of Teräsvirta (1994) and Markov-Switching (MS) model of Hamilton (1989). This is perhaps not 
surprising as many economic and financial variables exhibited regimes switching behaviours. For examples, 
Teräsvirta and Anderson (1992) applied STAR model to characterize dynamics of Gross National Product (GNP) 
during recession and expansion; Franses and van Dijk (2000) and Chan and McAleer (2003) followed the work 
of Lundbergh and Teräsvirta (1999) and applied the STAR models with Generalized Autoregressive Conditional 
Heteroskedastic errors (STAR-GARCH) to analyse the dynamics of stock returns.   

Despite the popularity in applying regimes switching models in empirical studies, the statistical and structural 
properties for STAR and STAR-GARCH models are limited and the results are often restricted to the two-regime 
case. The lack of general structural and statistical properties makes valid inferences difficult to conduct for multi-
regime switching models. Furthermore, the specification and the estimation of these models are not always 
straightforward, even in the two-regime case. As indicated in Haggen and Ozaki (1981) and Teräsvirta (1994), 
the transition rates in the STAR models are particularly difficult to estimate. This observation seems to be true 
also for STAR-GARCH models as demonstrated in Chan and McAleer (2002).   

This paper aims to identify the causes underlying the difficulties in estimating the transition rates for three-regime 
STAR-GARCH models. Following the findings using computer simulations, the paper also proposes a practical 
and simple solution to alleviate the numerical difficulties in estimating the parameters of these models. The 
usefulness of the proposed method is investigated by Monte Carlo simulations. The results show promising signs 
for obtaining stable parameter estimates for a class of three-regime STAR-GARCH models.  

The paper is organized as follows: Section 2 contains a concise review of the STAR-GARCH models. Section 3 
investigates the log-likelihood functions of three-regime STAR-GARCH models using computer simulations. 
Following the results from Section 3, Section 4 proposes a re-parameterization of STAR-GARCH models in 
order to alleviate the numerical problem associated with maximizing the log-likelihood functions. Section 5 
contains some concluding remarks.  

 

2. LITERATURE REVIEW -M ODEL SPECIFICATION , ESTIMATION , STRUCTURAL &  STATISTICAL PROPERTIES ,   

In order to make STAR models more applicable for financial time series, Lundbergh and Teräsvirta (1999) 
proposed the STAR-GARCH model. It uses the STAR model of Teräsvirta (1994) for modelling the conditional 
mean and the GARCH model of Bollerslev (1986) for modelling the conditional variance. The specification of 
the multi-regime STAR-GARCH (MRSTAR – GARCH) model is: 
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where 1k ≥ , ( )1,..., 'i i irφ φ φ=  and ( ; , )i t i iG s cγ  is the transition function with 0 1G = . The transition function is a 

function of the threshold variable ts  with threshold value ic and the smoothness parameter iγ . The transition 
function must be continuous, at least twice differentiable and bounded between 0 and 1. Two of the most 
common transition functions adopted by the literature are the first-order logistic function and the first order 
exponential function. The transition function in the Logistic STAR-GARCH model (LSTAR-GARCH) is defined 
to be 
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and the transition function in the Exponential STAR-GARCH model (ESTAR-GARCH) is defined to be: 
 

 ( ; ; ) 1 exp{ ( )},  0.t tG s c s cγ γ γ= − − − >  (2.3) 
 

van Dijk, Teräsvirta and Franses (2002) assert that the specification of the threshold variable ts can be a 
combination of both endogenous and exogenous variables. A common specification of the threshold variable in 
financial applications is a linear combination of lagged dependent variable, that is 
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It is now widely accepted that the conditional variance of returns from high frequency financial time series is not 
constant over time. Therefore, the GARCH model of Bollerslev (1986) is included in equation (2.1) to capture the 
dynamics of the conditional variance in addition to the STAR model specified for the conditional mean. The 
structural and statistical properties of GARCH model are well established, see for example, Ling and McAleer 
(2003).  
 

There are two approaches to estimate the parameters in STAR-GARCH models with m -regimes, namely, a two-
stage procedure and a joint parameter estimation procedure. The two-stage procedure involves estimating the 
parameters in the conditional mean at the first stage using Non-linear Least Squares (NLS). The parameters in the 
conditional variance equation are estimated at the second stage by using the estimated residuals from the first 
stage. For a comprehensive survey on the two-stage procedure, see Teräsvirta (1994), van Dijk et al. (2002), and 
Lundbergh and Teräsvirta (1999).  

One of the most common approaches for the joint parameter estimation procedure is to obtain the parameter 
estimates by maximising the log-likelihood function. Let ( ),θ = Γ Ω  so that ( )1 1 1',..., ', ,..., , ,...,m m mc cφ φ γ γΓ =  is the 

vector of all the parameters in the conditional mean and ( )1 1, ,..., , ,...,p qω α α β βΩ =  is the vector of parameter in 

the conditional variance. The Quasi Maximum Likelihood Estimator (QMLE) is defined to be  
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where Θ  is a compact subset of ( 2) 1r m p q+ + + +
� .  Haggen and Ozaki (1981) noticed that it is difficult to obtain 

QMLE as defined in (2.4) for STAR type models under different transition function. They explained that this 
could be the result of strong negative correlation between the transition rate, iγ  and the rest of the parameters. 
Teräsvirta (1994) confirmed that similar problem also exists for both LSTAR and ESTAR models.  

In addition to the numerical difficulties in obtaining the QMLE for STAR-GARCH models, the knowledge 
concerning statistical and structural properties of STAR-GARCH models is still very much limited. Virtually all 
of the existing theoretical results applied only to the two regime case of STAR and STAR-GARCH models. 

3. IDENTIFICATION OF ESTIMATION DIFFICULTIES – ANALYSIS OF THE LOG LIKELIHOOD FUNCTION  

This section identifies the cause of the numerical difficulties in estimating three-regime STAR-GARCH models. 
This is done by investigating the surface of log-likelihood function using simulated data. The procedure of this 
investigation can be found as follows: 
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1. Simulate a set of data following a pre-defined three-regime STAR-GARCH(1,1) model 
2. Given the data, compute the values of the log-likelihood function as defined in equation (2.4) with a 

range of transition rates and threshold values.  
3. Investigate the surface of the log-likelihood functions using 3-dimensional plots and contour plots. 
4. Use the simulated data above to individually investigate neighbourhoodε − plots of each parameter 

estimate around its optimum point.   

Given that the parameter vector of the STAR GARCH model used in the log likelihood equation, θ  is a 1x13 
vector, the only way to assess log likelihood plots within a 3 dimensional plane is to couple 2 parameters at a 
time against the log likelihood value. There are 78 unique combinations of a set of two elements ofθ , Hence 
there are 78 three dimensional plots and 78 Contour plots for ESTAR-GARCH and LSTAR-GARCH to assess. 
Of all the plots generated, the parameter of interest in this analysis is the transition rate, iγ . 

The simulation process generates one thousand observations following an MRSTAR GARCH process initially 
using the parameters in table 3.1. The first five hundred of these observations generated are trimmed to allow for 
the settling of data to the specified process. The remaining five hundred observations are then used to generate 
the required plots. 

1,0φ  2,0φ  3,0φ  1,1φ  2,1φ  3,1φ  1γ  2γ  1c  2c      ω  α  β  

0.1 0.3 .04 .0.35 .0245 .0478 0.21 0.7 -0.2 0.2 0.00001 0.2 0.78 

Table 3.1 Input parameters for generating the log likelihood plots 
 
Scilab, the software used in this exercise. It can only minimize an objective function, therefore deriving the 
parameter estimates using the generalized equation in (3.1), lt(θ) changes such that max lt(θ) becomes min gt(θ) 
where gt(θ)=- lt(θ). This implies the optimum is inverted in the plot results. 
   
Selected  results of the experiment are as follows: 

 

Figure 3.1: 3d and ε-neighbourhood plot results 

 

As displayed by the 3d surface plot analysis, the log likelihood surfaces for both ESTAR and LSTAR plots 
display a hinge or “V” shape around the optimum region. This creates a ridge that is flat. When compared to 
other parameters of the MRSTAR GARCH model, this flatness is found to be consistent with all parameters 
around their optimum, but is far more pronounced with transition rate plots for both ESTAR and LSTAR. 
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Moreover, the flatness affects ESTAR more severely than LSTAR. This is made evident by the hinge associated 
with ESTAR transition rate plots. Around the optimum they appear more “U” shaped as opposed to “V” shaped. 
It was also found that for both ESTAR and LSTAR transition rate plots, a much more complex shape exists when 
compared to all other parameters of the MRSTAR-GARCH model. This complexity is more sever with LSTAR 
than it is with ESTAR.  

Closer inspection revealed that the hinge associated with LSTAR transition rates is saw tooth shaped for the 
majority of LSTAR plots. This saw toothed characteristic is not clearly evident to the naked eye and was 
discovered when magnifying the plots around the optimum region. This warranted further inspection. 

A contour plot analysis provided further insight into the saw toothed characteristic identified for LSTAR 
transition plots. The contour analysis confirms that this characteristic is associated with LSTAR only. The 
ramification of this is that numerical difficulties in optimizing the log likelihood function is subject to the 
specification of the transition functions. 

The effect of the saw toothed shape on LSTAR transition rate plots is that it creates lumpiness around the 
optimum region. This creates many local optimums. Moreover, each local optimum also has an alarmingly large 
and flat neighbourhood. Overall, this suggests that the log-likelihood function for LSTAR-GARCH has a lumpy 
surface with flat peaks.  

ε-neighbourhood plots can be used to further investigate the degree of flatness around the optimum. All the 
parameters in the MRSTAR-GARCH have an unmistakable optimum point with the exception of the transition 
rates1. In particular the second transition rate behaves like an asymptote making exception for the graphical scale. 

In the strictest sense, unequivocal cause cannot be established. However, it is clear that the flatness of the log-
likelihood function associated with the transition rates creates some (if not all) of the difficulties in estimating 
MRSTAR-GARCH models. Section 4 will provide a plausible solution to this issue.  

 
4. RE-PARAMETERIZATION OF THE TRANSITION FUNCTION 

This section provides a simple transform of the transition rates iγ  to alleviate the numerical difficulties in 
optimizing the log likelihood function. Let  
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The transform has the following effect on the transition functions: for the logistic function: 
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Likewise for the exponential transition function: 

 2
2
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This transforms can alleviate the flatness around the optimum in the log-likelihood function as shown in Figure 
3.2: 

 

                                                           
1
 All the plots have been omitted for brevity, but they are available upon request. 
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Figure 3.2: ε -neighbourhood plot results 

 

 

The practical usefulness of this transform is investigated by Monte Carlo experiments. In addition to the original 
parameter vector for the GDP, a new parameter vector is also used in the Monte Carlo experiment to ensure the 
proposed method performs well for a range of parameters. The second parameter vector is defined as follows: 
 

1,0φ  2,0φ  3,0φ  1,1φ  2,1φ  3,1φ  1λ  2λ  1c  2c      ω  α  β  

0.01 0.03 0.04 0.0035 0.0245 0.0478 2.236 1.118 -1.5 1.5 0.00001 0.16 0.67 
 
which implies the two transition rates are 1 20.2 and 0.8γ γ= = . The data is re-simulated generating 1000 
observations, the first 500 are trimmed and the model is then estimated giving parameter estimates. This 
procedure is repeated 500 times creating 500 estimates of each parameter which is then presented in a histogram. 
The results from the Monte Carol experiments under both parameter vectors are very similar. Therefore, only the 
results under the second parameter vector are include for brevity. The results under the first parameter vector can 
be available upon request. The results are as follows: 
 

 

 

Comparing the transition rates estimates, without the transform for LSTAR both are marred with outliers and the 
estimator for these parameters is strongly skewed. The implementation of the transform has a significant effect on 
mitigating outliers and consequently insinuates an asymptotically normally distributes estimator for this 
parameter. 

The reduction in outliers is not as prominent for the transition rates in the ESTAR case but is still evident. This is 
far outweighed by the notion that without the transform, the optimization algorithm used the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm; commonly default for many applications, kept crashing and returning its 
initial values. The transform alleviates this serious issue and shows strong evidence towards the potential of an 
asymptotically normal estimator for these parameters as well. ESTAR however requires further refinement to 
reduce the skewness present in the lambda estimates. 

5.     CONCLUSION  

Through a three tier analysis of the log likelihood function of an MRSATR-GARCH model with three regimes it 
was found that estimation difficulty is most likely caused by relative flatness for ESTAR and a lumpy likelihood 
surface with flat minima regions for LSTAR. The core culprit parameter was found to be the transition rates. 

With an elementary transform on the transition rate and accentuates the minima region when assessed with an ε-
neighbourhood plot, vast improvements in the estimation difficulties are achieved not only with transition rates, 
but with all the other parameters of the MRSTAR-GARCH model. Prior to the transform most algorithms 
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crashed, with the transform this is averted. Although preliminary the transform with further refinement shows 
great promise.  A beneficial by-product of the transform on the previously unknown statistical properties of 
transition rates is that they appear to have signs of being asymptotically normal, which is an important subject for 
future research.  
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