
18th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009 
http://mssanz.org.au/modsim09 

 

Extreme Value GARCH modelling with Bayesian 
inference 

Zhao, X. 1 , L.Oxley 2 , C.Scarrott 1 , M.Reale 1  

1 Department of Mathematics and Statistics, University of Canterbury, Christchurch 
2 Department of Economics, University of Canterbury, Christchurch 

Email: xzh77@student.canterbury.ac.nz  

Abstract: Extreme value theory is widely used financial applications such as risk analysis, forecasting and 
pricing models. One of the major difficulties in the applications to finance and economics is that the 
assumption of independence of time series observations is generally not satisfied, so that the dependent 
extremes may not necessarily be in the domain of attraction of the classical generalised extreme value 
distribution. Even when the dependence satisfies conditions for the sequence to be within the domain of 
attraction of the generalised extreme value distribution, the traditional modelling approach does not 
necessarily give full insight into the form of the dependence. The generalized extreme value distribution can 
be combined with either other time series models or covariates to capture such dependence. This study 
examines a conditional extreme value distribution with the added specification that the extreme values 
(maxima or minima) follows a conditional autoregressive heteroscedasticity process. The dependence has 
been modelled by allowing the location and scale parameters of the extreme distribution to vary with time. 
The resulting combined model, GEV-GARCH, is developed by implementing the GARCH volatility 
mechanism in these extreme value model parameters. Bayesian inference is used for the estimation of 
parameters and posterior inference is available through the Markov Chain Monte Carlo (MCMC) method. 

The model is firstly applied to relevant simulated data to verify model stability and reliability of the 
parameter estimation method. Then real stock returns are used to consider empirical evidence for the 
appropriate application of the model.  

As with most extreme value modelling applications, the shape parameter is the most difficult parameter to 
estimate. This study also investigates the sensitivity and stability problems in an extension of the GEV-
GARCH model to allow a time varying shape parameter. It is demonstrated that a non-constant extreme 
shape parameter with a GARCH type time varying structure typically leads to over-parameterisation and 
consequent estimation difficulties.  

A comparison is made between the GEV-GARCH and traditional GARCH models. Both the GEV-GARCH 
and GARCH show similarity in the resulting conditional volatility estimates, however the GEV-GARCH 
model differs from GARCH in that it can capture and explain extreme quantiles better than the GARCH 
model because of more reliable extrapolation of the tail behaviour. 
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1. INTRODUCTION 

Modelling the tails of distributions is important in many fields, such as environmental sciences, hydrology, 
insurance, finance when there is an interest in the extreme values. Extreme Value Theory (EVT) considers 
the distributional behaviour of the extremes of random variables. The objective of EVT is to extrapolate the 
stochastic dynamics of a process to states with small chances of realization, and typically beyond the range of 
observed data. It is always challenging to justify the form of extreme models and to estimate parameters due 
to the inherent sparsity of observations in the tails, relative to that available in the bulk of the distribution. 
Hence, asymptotically justified parametric models are typically used to represent the data generating process, 
which can provide reliable extrapolations required in such applications.  

The classical Generalised Extreme Value (GEV) distribution is an asymptotically justified model to describe 
the limiting distribution of the maximum or minimum of a sequence of independent and identically 
distributed random variables. Under certain conditions (Beirlant, 2004) forms of short range dependence can 
also lead to the distribution of the maximum or minimum remaining within the same GEV distribution 
family. However, these results are not necessarily helpful in describing the detailed form of the dependence. . 
Some recent research has been undertaken on modelling extreme values with covariates in non-stationary 
conditions (Smith, 1989; Davison and Ramesh, 2000; Pauli and Coles, 2001),. In this paper, we have taken a 
rather pragmatic approach by amalgamating commonly used GARCH model with the classical GEV model.  

Financial data is well known to be heavy tailed and extreme value theory has been shown to be a very useful 
tool in estimating and predicting the extreme behaviour of actuarial and financial products, such as predicting 
the largest claim in insurance and the Value at Risk (VaR) in finance. Applying extreme value models 
however is not straightforward in these applications because of the dependency and seasonality involved. 
Modifications to classical extreme value models have been implemented to deal with these kind of data. This 
study examines the dynamics of the maximum and minimum value of intra-day financial returns, using an 
extreme value model constructed as a combination of classical GEV distribution and well known GARCH 
model. The dependence is captured by allowing the location and scale parameters of the extreme value 
distribution to follow a conditional autoregressive heteroscedastic process. The study has been conducted 
with both simulated and real data. Further results on the model identification of the GEV shape parameter are 
supplied to show that complications arise if the GARCH structure is also applied to the GEV shape parameter 
as one might expect due to the inherent difficulty in estimating this parameters due to the typical lack of 
information in the tails.  

2. EXTREMES OF NON-STATIONARY SEQUENCES  

2.1. Generalized Extreme Value Distribution 

The Generalized Extreme Value distribution (GEV) is an asymptotically motivated approach for describing 
the distribution of the maxima and minima of a realized sequence of independent random variables having 
the common distribution function (Beirlant, 2004): 
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The model has three parameters: a shape parameter ξ, a scale parameter σ and a location parameter μ. The 
GEV distribution represents three types of tail behaviours according to the value of shape parameter ξ.  The 
Fréchet type (slowly decaying) tail and the Weibull type (upper bounded) tail correspond respectively to ξ>0 
and ξ<0. The Gumbel type (exponentially decaying tail) is considered in the limit as the shape parameter 
ξ→0.  Classical extreme value theory shows that, if a limiting distribution for the maxima/minima of a 
sequence of iid random variables exists, then it must fall into these three types.  

2.2. Extremes of non-stationary/dependent sequence 

The classical extreme value distribution assumes that the time sequence of realizations follow a stationary  iid 
process. Certain forms of (short range) dependence can also be permitted, but still lead to the same type of 
limiting extreme value distribution. However, this result does not necessarily provide a detailed description 
of the form of the dependence. We have approached modelling the dependence/non-stationary behaviour by 
allowing the time varying extreme value parameters. There are a large catalogue of models considered in the 
literature. The first principle of model selection is the simplicity and attention need to be paid to the structure 
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of shape parameter since it is the most difficult to estimate. It is usually unrealistic to model the shape 
parameter as the function of either time or other covariate variables in applications. Extra-parameterization in 
the model has to be supported by the evidence of a need for a more complex model structure to adequately 
describe variations in the observed data.  

The Generalized AutoRegressive Conditional Heteroscedastic (GARCH) process is widely used to model 
non-stationary in the variance of financial time series. This study considers a conditional GEV distribution 
with the specification that the extreme value sequence (maxima or minima) following an autoregressive 
process with a GARCH type conditional variance structure. With the combination of GEV and GARCH 
process, , we will show that the model is better suited to explain the extreme quantiles than the classic 
GARCH model alone, which cannot capture the tail behaviours adequately with either Normally distributed 
or even fatter tailed distributed (e.g. t-distributed) innovations.  McNeil and Frey (2000) suggest a two stage 
model in estimating VaR and related risk measures by applying extreme value theory (EVT) on GARCH 
residuals, where fit a GARCH type model at the first stage to gain an independent residual sequence of 
observations and apply Generalized Pareto Distribution on standardized residuals. An important benefit of 
our approach is that it is a one stage model and has the advantage in accounting for all uncertainty in the 
estimation which is much more of a challenge in the two stage model.  

3. THE GEV-GARCH MODEL 

3.1. Model Structure 

The proposed model assumes that the observations come from the Generalized Extreme Value (GEV) 
distribution with a GARCH(1,1) process describing the conditional variance of extremes. Therefore, the 
distribution function of the observation x (maximum values) can be written as: 
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where │β1│<1, α0 >0, α1 >0, α2 >0, and α1 + α2 <1. As stated before, it is typically empirically unrealistic to 
try to model ξ as a function of time unless there is strong evidence that the shape of extreme value 
distribution does change over time. In this study ξ, the shape parameter, as supported by empirical evidence 
is constant through time. This simplification does not jeopardize the efficacy of the model and proves very 
beneficial as the shape parameter is crucial in the GEV distribution and it well known to be challenging to 
estimate due to the sparsity of tail data. The simulation study in Section 4 shows the sensitivity of the model 
with a time varying shape parameter and the estimation difficulties with a non-constant shape.  

The expected value and variance of  tx  are (outside of the shape parameter ranges the moments are infinite): 
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3.2. Bayesian estimation of the model 

We use Bayesian inference to estimate the model parameters using Markov Chain Monte Carlo (MCMC) to 
obtain posterior distributions. The parameter vector θ = (ξ ,α0 , α1 , α2 , β0 , β1 ) can be decomposed into two 
component θ1 = (ξ , β0 ) which are defined over the whole real line and θ2 = (α0 , α1 , α2 , β1 ) which must be 
strictly positive. We use a normal prior on θ1 and a flat prior on θ2 for simplicity, to indicate little prior 
information being available. The posterior distribution of θ is 
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where I(θG) is an indicator function reflecting the constraints on the parameters above and 
( )tttGEV xf μσξ ,,|  is the GEV density function.  

A random walk Metropolis-Hastings algorithm has been used to sample the posteriors, as it has the  
advantage of being free of functional form since the posterior distribution function is not a proper probability 
function. MCMC has been used to update component by component, in order of importance of the 
parameters. Since the shape parameter is the most important it is the first one to be updated. The rest 
components are updated as (α1 , α2 , α0 , β1, β0). The restrictions on θ (I(θG)), are enforced during the sampling 
procedure by rejecting the draws that violate them. The stationary constrains,│β1│<1, α1 + α2 <1 and 

( ) 0/1 >−+ tttx σμξ  are also imposed. Without those constraints the chain could simply converge to 

incorrect values or be computationally inefficient. The convergence of MCMC is checked by monitoring the 
marginal distributions of the parameters obtained from the parallel chains, using standard diagnostic checks 
(Gelman, Carlin, Stern and Rubin 2004). The predictive posterior distributions and deviance analysis are 
imposed for the model fitting. 

3.3. Illustration with simulated data 

We first check the stability of the model and parameter estimation using simulated data. The simulated data 
use three different parameter sets with 100 simulates series for each parameter set using the sample size of 
2500, which is of similar length to the real application sample in the following section. The first parameter 
vector set considered is close to the application estimation results in Section 3.4. The second parameter set 
use a high coefficient of the lag variance term, α1, and the third parameter use a relative lower value 
compared to the first set. The different shape parameter values used for these three sets are to identify the 
model feature when the tail getting heavier.  A more extensive simulation study is detailed in Zhao (2009)., 
but have not been included for brevity. We set the priors for parameter θ (ξ ,α0 , α1 , α2 , β0 , β1 ) as follows: 

( ) ( ) ( ) )5.0,0(~),2.0,0(~,5.0,0~,99.0,35.0~,2.0,0~,)1.0,25.0(~ 10210 UNUUUN ββαααξ  

for simulated samples based on θ1 and θ2  . 

( ) ( ) ( ) )5.0,0(~),3.0,0(~,5.0,0~,99.0,30.0~,2.0,0~,)15.0,1.0(~ 10210 UNUUUN ββαααξ  

for simulated samples based on θ3 . 

Table 1 summarizes the results for the simulated data samples. For each individual sample simulated, the 
estimated parameter value is the mean of 95% highest density interval (HPD) of the posterior samples. The 
estimated parameter value reported as Table 1 are the mean value over 100 samples. The table also gives the 
mean square error (MSE) of the estimators compare to the true parameter value. The expected estimators are 
very close to the true values and the sample variation are small. As the shape increase, the MSE falls, which 
suggests a better performance of the model on a relative heavier tail distribution.  

Table 1: Summary of simulation estimations 

θ1 
True 
Value 

Estimated 
Value 
(mean) 

MSE θ2 
True 
Value 

Estimated 
Value 
(mean) 

MSE θ3 
True 
Value 

Estimated 
Value 
(mean) 

MSE 

ξ 0.08 0.072 0.0006 ξ 0.20 0.201 0.0003 ξ 0.30 0.297 0.00029 

α0 0.01 0.009 0.0000 α0 0.01 0.010 0.0000 Α0 0.05 0.051 0.00002 

α1 0.45 0.480 0.0066 α1 0.80 0.793 0.0014 Α1 0.50 0.498 0.00036 

α2 0.08 0.078 0.0002 α2 0.02 0.021 0.0000 Α2 0.10 0.099 0.00008 

β0 0.21 0.210 0.0001 β0 0.01 0.010 0.0000 Β0 0.05 0.051 0.00012 

β1 0.32 0.321 0.0003 β1 0.10 0.101 0.0001 Β1 0.20 0.201 0.00023 

The expected variance of extreme values has been calculated and the extreme volatility is defined as the 
square root of the expected variance. The volatilities from the two models are very close to each other for the 
simulation data samples as the real application below (refer to Figure 2). This suggests non-homogeneous 
and GARCH-featured extreme variances. 
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The similarity of two volatility sequences however induce the question of what is the extra value of GEV-
GARCH model respect to GARCH model. The answer is that GEV-GARCH can explain the extreme 
quantiles better in the way of combining the extreme tail distribution and the conditional variance process. 
Figure 1 plots the sequence of the quantiles defined by both GEV-GARCH and GARCH model along with 
the actual observations (dots) for this particular sample.  It is clear that the 97% quantile explained by the 
GEV-GARCH model (solid line) covers more of the extreme values than the corresponding GARCH 
quantiles (dashed line).  Table 2 compares the Mean Square Errors (MSE) of different model quantiles to the 
true quantiles, including GEV-GARCH, GARCH-GEV (a similar frame as McNeil & Frey's GARCH-GPD) 
and GARCH. We report only one sample results for each parameter simulation set above for brevity. As the 
increase of quantile, MSE for all three models increase as expected for less information of further tail. But for 
all the quantiles, GEV-GARCH has the smallest MSE and GARCH has the largest MSE. The difference 
among three models gets larger and larger for higher quantiles as well as the tail distribution becomes 
heavier. All other simulated samples have similar results. These results suggest that the GEV-GARCH should 
be preferred if the interest is in modelling or predicting extremes with conditional variance, particular if the 
distribution has relatively heavy tails.   

Figure 1. Quantile plot of a sample of θ2 
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3.4. Illustration with Financial data 

Bali and Wenbaum (2007) develop a conditional extreme value volatility estimator (EVT) based on high 
frequency returns which allows all three parameters of GEV distribution to vary over time. They apply the 
model to daily 5 minute maximum returns of stock index to get EVT and compare the relative performance 
of EVT with GARCH and implied volatility (VIX) in forecasts of realized volatility. The paper argues that 
EVT provides more accurate forecasts. However, there is insufficient support for the model specification and 
for the assumption that the shape parameter changes according to a GARCH structure as with scale. As stated 
above, a changing shape parameter can jeopardize the model stability and augment the sensitivity of the 
estimators. Also the changing shape challenges the estimation method because of the scarcity of information 
on the extremes. Maximum likelihood estimation can have difficulty in finding the true global mode of the 
likelihood. In our study, we also apply our GEV-GARCH on daily 5min maximum return of individual stock 
returns to identify whether the model can supply the additional information in predicting volatility.  

 
Table 3: Model estimation for IBM  

θ Estimated Value 
CI 

Low High 

ξ 0.076 0.048 0.104 

α0 0.006 0.004 0.007 

α1 0.453 0.309 0.598 

α2 0.083 0.055 0.113 

β0 0.207 0.193 0.221 

β1 0.320 0.286 0.356 
 

The estimated results for stock return are very 
similar to the simulation results of θ1. Table3 
reports the parameter estimates for IBM daily 5 
minute maximum return and 95% confidence 
interval of the posterior which was obtained  by 
MCMC. The GARCH coefficient α1 is less than 
0.5.  

In Bayesian inference, the posterior predictive 
graph is used to display the data alongside 
simulated data from the fitted model (posterior 
distribution) and to show the discrepancies 
between real and simulated data to check the 
model fitting. Since the study is interested the 

Table 2. Quantile MSE  

  Quantiles 0.9 0.95 0.99 0.999 

θ1 

GEV-GARCH 0.0009 0.0016 0.0047 0.0147 

GARCH-GEV 0.0011 0.0022 0.0073 0.0251 

GARCH 0.0011 0.0073 0.0848 0.5267 

θ2 

GEV-GARCH 0.0027 0.0058 0.0237 0.1317 

GARCH-GEV 0.0133 0.0267 0.0936 0.3794 

GARCH 0.0182 0.0347 0.6322 6.3343 

θ3 

GEV-GARCH 0.0014 0.0031 0.0289 0.4748 

GARCH-GEV 0.1005 0.1950 1.4089 18.8870 

GARCH 0.0501 0.5279 11.9866 146.2920 
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extreme quantiles, the posterior predictive 
quantile (PPQ) distributions are shown as Figure 
4. The figure gives the PPQ distributions and its 
95% confidence interval (dot line). All the sample 
quantiles are located within the confidence 

interval of PPQ. The sample quantiles (solid line) 
are all close to the mode of the distributions. As 
expected, the tail quantile distributions are more 
skewed and heavy tailed at higer quantiles. 

 
Figure 2. Volatility Plot of stock return 
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Figure 3 Quantiles plot of stock return 
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There is no clear difference in volatility estimators (Figure 2). This suggests that a conditional autoregressive 
heteroscedasticity process of extremes defined through the time varying scale and location parameters can 
capture the non-homogenous variance of extremes, which the classical GEV cannot do. There is an obvious 
difference in the extreme quantiles based on two models shown in Figure 3. The GEV-GARCH expected 
quantile covers more extreme observations since it provides flexibility in modelling the tail behaviour. 

Figure 4. Posterior Predictive Quantiles 
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4. SIMULATED DATA WITH TIME VARYING SHAPE

A simulation study considered a time varying shape parameter of the GEV, for a comparison with Bali and 
Wenbaum (2007), of the form: 12110 −− ++= ttt ccc εξξ . Considerable estimation problems were 

encountered, due to a parameter identifiability. As an example, for brevity, a two dimensional profile 
likelihood plot on c1,c2 for the sample simulated, is shown in Figure 5, suggests a flat likelihood surface along 
parameter c1. (TRUE VALUE IS WHAT, SAMPLE SIZE?). Hence, even for data generated from the model 
maximum likelihood and Bayesian inference is problematic. When the maximum daily 5min return series is 
used, results similar to simulated data have been found, see Zhao (2009) for details. Further, Figure 6 gives 
the profile likelihoods contour plot on two shape related parameters when applying real stock-IBM returns. 
The multiple modes of the likelihood surface indicate the sensitivity of the model. 
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Figure 5. Profile likelihood for shape parameter- simulated 
data  
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Figure 6. Profile likelihood for shape parameter- IBM   
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Both simulation and real data results imply that allowing the shape parameter change over time Accoriding to 
the GARCH structure applied to the scale parameters leads to considerable identifiability problems. Further, 
it is generally not realistic to assume that shape parameters will change as fast as other two parameters even it 
is not necessarily a constant over time.  

5. DISCUSSION AND CONCLUSIONS 

This paper develops a GEV-GARCH model by applying a conditional autoregressive heteroscedastic 
structure to the classical GEV distribution, through time varying scale and location parameters to capture the 
effects of temporal dependence present in most financial data. A simulation study and real data application 
show that the GEV-GARCH can capture the dynamic of conditional variance of extremes and model the tail 
behaviour of the underlying variables.  Further results demonstrate model identification and parameter 
estimation complications arise when considering a time varying shape parameter with a similar GARCH 
structure. Although the model considered in the study fixed the shape of GEV as constant in time, it is likely 
that the real structure of shape will change over time. In the case of market structure change, the expected tail 
behaviour can change and induce the change on the shape of GEV. However, we have shown that model 
identification is problematic if the tail behaviour changes as fast as the volatilities. The model can be used in 
estimation of tail-related risk for heteroscedastic time series and avoids the difficulty in capturing the 
estimation uncertainty as in the related  and commonly used two stage approach by McNeil and Frey (2000).   
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