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Abstract: A versatile computational model is described for the two-dimensional fluid-structure interaction
between a fluid flow and a thin flexible plate held at its leading edge. This fundamental system may be con-
sidered representative of many engineered or natural systems in which a plate or membrane experiences spon-
taneous, and often sustained, vibration. The energy exchanges between the fluid and structure that underpin
such motions may be either desirable (for example in sound-production or as a fluid-energy extraction device)
or damaging (for example, producing material fatigue or instability in paper-rolling processes).

The system studied requires that the governing fluid equations are solved concurrently with those of the flexi-
ble plate with compatibility of motion and continuity of stresses at the fluid-structure interface. The former is
written as a kinematic boundary condition on the solution of the Laplace equation for the fluid flow. While this
implies an inviscid and irrotational flow, viscous effects are implicitly included through a streamwise distribu-
tion of bound-vorticity (i.e. boundary-layers are assumed to be infinitely thin) and the imposition of a Kutta
condition that effectively sets the correct sum of bound vorticity. Thus, the model developed is appropriate to
flows with high Reynolds number that are most commonly found in applications. Continuity of stress for an
inviscid fluid requires that the pressure matches the stresses due to the flexible-plate’s inertial forces and its
bending stiffness. Finally, as the plate moves, its changing shape means that the lift it generates - the sum of
the pressure forces that drive the plate motion - also changes. This lift variation then requires that vorticity
is continuously shed from the trailing edge in order to satisfy Kelvin’s circulation theorem and this yields a
near-field wake that influences the flow over the flexible plate.

In our computational model we deploy a boundary-element method, using first-order vortex panels, along the
surface of the flexible plate. A Kutta condition is enforced at the trailing edge of the deforming surface while
the Kelvin circulation theorem is used to determine the strengths of discrete Gaussian vortex blobs that are shed
and then convected with the mean flow to form the downstream wake. We assume small-amplitude disturbances
of the flexible plate that permits linearisation of the kinematic condition and the wake dynamics. The flexible
plate is modelled by the beam equation that is solved using finite-differences. The system can then be written
as a single matrix equation for the beam deflection and its time derivatives at the collocation points and a sum
of wake-vortex effects. When the latter are excluded and a steady flow is assumed, system eigenmodes can be
extracted using state-space methods to determine the vibration frequencies of the fluid-structure system and the
stability of such oscillations. Alternatively, numerical simulations of the full system are conducted to study the
response to an applied initial excitation. In this paper, we explore the effect on the stability of the fluid-loaded
plate when a point mass is added to an otherwise homogeneous plate. It is shown that this effect can be either
stabilising or destabilising depending upon the location of the added mass and that its inclusion modifies the
energy exchanges of the fluid-structure interaction of the ‘standard’ system.

Keywords: Fluid-structure interaction, flexible surface, flutter instability, modal analysis, computational mod-
elling.
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1. INTRODUCTION

The lifting surface in the present study is a thin flexible plate that in its unloaded state is exactly aligned with
the direction of a uniform flow. When subjected to a small-amplitude perturbation, the contour of the deformed
plate causes it to become a lifting surface over which a non-uniform fluid pressure field acts. This serves to
further deform the plate which, in turn, modifies the lift force and its associated pressure field. Thus, a fluid-
structure interaction is established that may lead to either attenuating, neutrally-stable or amplifying oscillations
of the structure. Of particular importance is the critical value of the flow speed at which fluid-loaded vibration
first become unstable. The two-dimensional system studied is illustrated in Fig. 1(a). While this system is of
fundamental interest, its dynamics underlies the behaviour of many physical systems ranging from fluttering
flags, through to oscillations of the human soft-palate that create snoring noises, and to energy-harvesting
devices that could extract fluid energy through its transfer to the plate in a process of controlled destabilisation.

Kornecki et al. (1976) were the first to conduct comprehensive modelling and analysis of the problem at hand,
although it has classical roots that date back to Lord Rayleigh (and see, for example, the elegant experiments
of Zhang et al. (2000) who investigated the oscillation of a filament in a soap-film flow). Using ideal flow
Kornecki et al. studied the two-dimensional problem of flexible plate embedded in an infinite domain of fluid,
as did the more recent work of Huang (1995), Yamaguchi et al. (2000), Watanabe et al. (2002), Argentina and
Mahadevan (2005) and Tang and Paı̈doussis (2007).

Eloy et al. (2007, 2008) incorporated the effects of finite aspect ratio and showed that these principally served
as a correction to the fundamentally two-dimensional dynamics of the problem. The flow-plate configuration
has been extended to that of a flexible plate mounted in plane channel flow; see Aurégan and Depollier (1995)
and Guo and Paı̈doussis (2000). All of these studies predict that the plate loses its stability through flutter that
sets in beyond a critical uniform flow speed or Reynolds number in the case of viscous channel flow; for the
latter refinements see Balint and Lucey (2005) and Tetlow and Lucey (2009). For short plates the flutter mode
is predicted to comprise a combination of the first and second in-vacuo modes while for long plates, or plates
with heavy fluid loading, the critical mode is dominated by higher-order mode content. The recent work of
Howell et al. (2009) elucidated the instability mechanisms showing that ‘short’ plates succumb to single-mode
flutter while ‘long’ plates are destabilised by modal-coalescence flutter of the Kelvin-Helmholtz type predicted
exactly for fluid-loaded plates of infinite extent and discussed, for example, by Crighton and Oswell (1991) and
Lucey et al. (1998).

In this paper we extend the work of Howell et al. (2009) to include inertial inhomogeneity in the structure
and study its effect upon the stability of the flexible plate. In particular we model and investigate the effect
of adding a point mass, for a range of values, at different locations along the flexible plate. Certain counter-
intuitive results are obtained - for example, the addition of mass can be stabilising - and these are explained
in terms of the energy transfers between the fluid and the plate. Finally, we emphasise that, although the
investigation described herein has a specific focus, the methods developed and deployed have a very general
application for modelling the fluid-structure interaction of an arbitrarily deforming flexible surface.

(a) (b)

Figure 1: Schematics of (a) the system studied, and (b) the computational modelling approach used.
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2. COMPUTATIONAL MODELLING

The irrotational part of the flow field is found using a linearised boundary-element method (BEM) while the
vorticity shed from the trailing edge of the flexible plate is modelled using the discrete-vortex method (DVM).
In the application of the BEM, first-order vortex panels are used on the rigid central surface and the flexible
plate because the discontinuity of tangential fluid velocity across these thus makes them lifting surfaces. It
is the distributed lift that drives the motion of the flexible plate. Source-sink panels are applied on the rigid
channel walls. A schematic of the scheme is shown in Fig. 1(b). The singularity strengths are determined by
enforcing the no-flux boundary condition at every panel control point and, for the central surfaces, continuity
of the distributed vorticity between adjacent panels. Thus the vector of singularity strengths is given by

{Γm} =
[
IN
im

]−1 {
U∞θm + η̇m + uNb

m

}
, (1)

where Γm = γm + λm for the vortex elements.
[
IN
im

]−1
contains, in addition to the normal influence-

coefficients of the singularities, the boundary conditions of: a) vortex strength continuity at panel end points;
and b) zero vorticity at the plate’s trailing edge (thus enforcing the standard Kutta condition of zero pressure
difference at the trailing edge for linear displacements). θm is the panel’s angle to the horizontal, which in the
linear framework is the streamwise spatial derivative of the boundary, ηm (the vertical deflection of the plate),
while uNb

m is the normal component of the velocity induced by the wake vortices evaluated at control point m.

The unsteady Bernoulli equation is used to determine the pressure distribution on the flexible plate. The trans-
mural pressure is then used as the forcing term in the one-dimensional thin flexible-plate equation couched in
finite-difference form. The motion of the plate and the fluid flow are fully coupled through deflection, vertical
velocity and acceleration of the two media at their interface. For the vortical wake, Gaussian vortex blobs are
shed at each time-step of the plate’s motion and the circulation assigned to each blob is such that the Kelvin
condition is enforced. Linearised convection is adopted in the present study whereby the blob centres remain
in the horizontal plane of the undisturbed plate and thus travel downstream only with the speed of the mean
flow. This approach allows a single system (matrix) equation to be written as follows

ρh [I] {η̈m} + d [I] {η̇m} + B [D4] {ηm} = 2ρfU2
∞(1/δx)

[
B+

1

]
{ηm}

+ ρfU∞(1/δx)
[
B+

2

]
{η̇m} + ρfU∞

[
B−1

]
{η̇m}

+ ρf [B2] {η̈m}
− 2ρfU∞ [B1]

{
uNb

m

}
− ρf [B2]

{
u̇Nb

m

}
, (2)

where [B] are matrices of singularity influence coefficients, [D4] is a fourth-order spatial-differentiation matrix
and [I] is the identity matrix. ρ, h, d and B are respectively, the material density, thickness, dashpot-type
damping coefficient and flexural rigidity of the plate, the dynamics of which appear on the left-hand side of
the equation. Uniform discretisation of the plate length L into M collocation points defines δx = L/M .
The pressure perturbation that drives the plate motion appears on the right-hand side, where ρf and U∞ are
the fluid density and flow speed. The pressure terms in the line order of Eqn. (2) can be interpreted in the
following way: Line 1 contains the deflection-based hydrodynamics stiffness; Line 2 contains the plate-induced
hydrodynamic damping; Line 3 contains the plate-induced hydrodynamic inertia; and Line 4 comprises the
respective contributions to hydrodynamic damping and inertia from the wake vorticity.

The formulation of Eqn. (2) is for a homogeneous flexible plate. More details of its derivation are given in
Howell et al. (2009) who also investigated the inhomogeneous case of spatially varying flexural rigidity, B. In
the present study, we investigate inertial inhomogeneity by introducing a point mass at a specific plate location
xp (where 0 < xp < L); its value is given in quanta, n+, of total plate mass (per unit width), MT = ρhL.
To effect this, the element (m,m) of the identity matrix, [I] in Eqn. (2) becomes (1 + n+(MT /δx)) where
m = int[(xp/L)M ] is the collocation point closest to the location at which the point mass is added.

We take two approaches to the solution of Eqn. (2). First, by neglecting the wake-vortex contributions it
becomes a second-order ordinary differential equation in {η}. Setting w1(t) = η(t) and w2(t) = η̇(t) and
rearranging the matrices in companion-matrix form, yields a system equation in the form

ẇ = [H]w, where w = {w1, w2}T
. (3)

Single-frequency time-dependent response is assumed at ω which is a complex eigenvalue of [H]. Positive ωI

and ωR respectively represent the oscillatory and amplifying parts of the response.
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Alternatively, we perform a time-discretisation of η in Eqn. (2) and then numerically time-step, using a semi-
implicit method, the equation to determine the system response to some form of initial perturbation. In doing
so we are able to study transient behaviour and reveal localised flow-structure dynamics that when summed
contribute to the system response.

3. RESULTS

We non-dimensionalise using the scheme in Crighton and Oswell (1991) and Lucey et al. (1998) and thus

t̄ = t [ρ2
fB

1
2 /(ρh)

5
2 ], Ū = U∞ [(ρh)

3
2 /(ρfB

1
2 )] and d̄ = d [(ρh)

3
2 /(ρ2

fB
1
2 )]. (4a, b, c)

Using the time scale that appears in Eqn. (4a), angular frequencies are therefore non-dimensionalised as ω̄ =
ω [(ρh)

5
2 /ρ2

fB
1
2 ]. The non-dimensional streamwise coordinate, the length (or mass ratio) of the flexible plate

and the channel height are defined by

x̄ = x/L, L̄ = L[ρf/(ρh)] and H̄ = H[1/L]. (5a, b, c)

Howell et al. (2009) showed that for H̄ = 1 the system behaves as if the flexible plate were in an infinite domain
of fluid flow; i.e. the channel walls seen in Fig. 1 are effectively absent. This is the configuration studied herein.
We also remove the upstream splitter plate and neglect structural damping, hence d̄ = 0; the effects of these
refinements were presented in Howell et al. (2009). Thus, for the present system the non-dimensional control
parameters in the investigation that follows are the flow speed Ū , the plate length L̄, the quantity of added mass
n+, and its location x̄p.

To understand the results of our numerical simulations, we consider the energy evolution of the system. Adapt-
ing the derivation of Balint and Lucey (2005), the plate energy changes with time according to

d

dt

(
1
2
ρh

∫ L

0

η̇2dx︸ ︷︷ ︸
Ek

+
1
2
n+MT η̇2|x=xp︸ ︷︷ ︸

E+
k

+
1
2
B

∫ L

0

η2
,xxdx︸ ︷︷ ︸

Es

)
=

∫ L

0

(−∆p) η̇dx,︸ ︷︷ ︸
Ẇ

(6)

where the total plate energy, Et, is the sum of the kinetic energies of plate, Ek, and added mass, E+
k , plus the

plate’s strain energy, Es. Equation (6) shows that the plate energy either grows or decays in time depending
upon the rate of work done by the pressure loading, (−∆p) (determined by the right-hand side of Eqn. (2)).
In our results we present energy records, W̄ (t), that represent the sum of pressure work done up to time t and
therefore corresponds to the current value of plate energy Et; these are non-dimensionalised by the initial strain
energy of the plate due to the applied deflection.

3.1 ‘Short’ plates - low mass ratio
Figure 2(a) shows the variation of system eigenvalues with applied flow speed for a homogenous, or ‘stan-
dard’, short plate at L̄ = 1. Single-mode flutter of the second system mode is the critical instability at a
non-dimensional flow speed Ū = Ūc = 5.452. Figure 2(b) shows the numerical simulation of the critical mode
at this flow speed. Note that the simulation commenced by releasing the plate from an applied deformation -
the thick black line - in the shape of second in-vacuo mode. The critical mode, seen to contain strong contri-
butions from the first and second in-vacuo modes, then evolves from the initial excitation. Howell et al. (2009)
monitored the phase angle between the pressure loading and plate velocity in numerical simulations showing
that both the leading-edge singularity and the trailing-edge Kutta condition contribute to non-orthogonality of
the pressure and plate velocity. The product of these terms yields the localised rate of work done (per unit area
of plate) which is then non-zero when integrated over one period of oscillation. The plate-energy record for the
simulation of Fig. 2(b) is shown in Fig. 2(c). After transients due to mode adjustment have convected away, the
total energy is constant. However, it is also seen that the energy exchanges between plate and flow are spatially
dependent; thus for example, the third quarter from the leading edge of the flexible plate is locally unstable
while the fourth quarter is stable. It is the sum of all these energy transfers that, in this case, yields the neutral
stability of the system at this critical speed.

We now show how the addition of a point mass changes the results of the standard case characterised by Fig. 2.
Figures 3 and 4 show the effect of adding a point mass of n+ = 3 (three plate masses) at positions x̄p = 0.625
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(a) (b) (c)

Figure 2: System dynamics for L̄ = 1:
(a) Variation of eigenvalues with flow speed (oscillatory and growth/decay parts represented by broken and full
lines respectively), (b) time-sequence of instantaneous plate position at critical speed Ūc = 5.452 (of Mode 2
in (a)), and (c) time series of cumulative energy transferred from flow to plate in —— (thin) first, second,

third, and · · · fourth quarters of the plate while —— (thick) is the total of these. Adapted from Howell et
al. (2009).

(a) (b) (c)

Figure 3: The effect of an added point load on the fluid-structure interaction at L̄ = 1:
System giving Fig. 2 modified by added mass n+ = 3 at x̄p = 0.625 giving Ūc = 6.609.

(a) (b) (c)

Figure 4: The effect of an added point load on the fluid-structure interaction at L̄ = 1:
System giving Fig. 2 modified by added mass n+ = 3 at x̄p = 0.875 giving Ūc = 4.406.
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and x̄p = 0.875 respectively. The addition of a point mass at other locations on the plate revealed that its
effect was most pronounced (for a given n+) at these two values of x̄p. In each figure the mode and energy
plots are at the critical flow speed. Adding the mass at x̄p = 0.625 is stabilising because it increases Ūc to
6.609. This occurs because of the reduced energy transfer to the plate in the third quarter that principally drives
instability (see Fig. 2(c)). We also note from the eigenvalue plot of Fig. 3(a) that this mass addition causes
coupling between Modes 1 and 2 and this interrupts the single-mode flutter mechanism of the standard case;
this effect is clearly seen in the mode plot of Fig. 3(b) that strongly features a Mode-1 contribution by contrast
with Fig. 2(b) in which Mode 2 is dominant.

In contrast, the same point mass added at x̄p = 0.875 is destabilising with the critical speed reducing to 4.406
from 5.452 of the standard case. The energy record of Fig. 4(c) shows that the added mass interrupts the
stabilising effect of the fourth quarter of the plate that in the standard case of Fig. 2(c) transfers energy from
plate to the fluid. However, the instability mechanism - single mode flutter - is unchanged as is evidenced by
comparing the morphology of the corresponding eigenvalue plots, Figs. 2(a) and 4(a), and observing the critical
modes plotted in Figs. 2(b) and 4(b).

3.2 ‘Long’ plates - high mass ratio
Howell et al. (2009) showed that fluid-loaded plates with high L̄ are destabilised by modal-coalescence flutter
as opposed to single-mode flutter that gives the critical condition for plates with low L̄ (those investigated in
§3.1 above). Figure 5 explores the effect of an added point mass to a ‘long’ plate with L̄ = 10. Without an
added mass, the homogeneous case of Fig. 5(a) shows that Mode 2 is destabilised through its coupling with
Mode 3. Adding a point mass with n+ = 0.2 at locations x̄p = 0.625 and x̄p = 0.875 gives the eigenvalues
plotted in Figs. 5(b) and 5(c) respectively. At both locations the effect is destabilising and the greatest reduction
to the critical speed occurs when the added mass is placed nearest to the trailing edge of the plate. In Fig. 5(b)
we note that the modal-coalescence mechanism is promoted because the added mass reduces the difference
between oscillatory frequencies of the interacting modes. However, this is not the situation in Fig. 5(c) and the
instability mechanism is seen to differ from that of Figs. 5(a) and 5(b). Adding the point mass at x̄p = 0.875
promotes single-mode flutter that is known to occur at lower flow speeds than those required to cause modal-
coalescence; see the discussion of fluid-load effects in Howell et al. (2009). Thus, the effect of adding mass is
complex because there exist two potential instability mechanisms within the fluid-structure system.

(a) (b) (c)

Figure 5: Variation of eigenvalues with flow speed for L̄ = 10 (oscillatory and growth/decay parts represented
by broken and full lines respectively), (a) homogeneous - no added mass, and with added point mass n+ = 0.2
at: (b) x̄p = 0.625 and (c) x̄p = 0.875.

3.3 Summary of critical-speed variations
The effect of the wake is not included in the investigations of §3.1 and §3.2. Thus, in Fig. 6(a) we show the
variation of critical speed of a homogeneous plate (no added mass) with plate length (mass ratio), L̄. For short
plates the wake effect is stabilising while for long plates it is destabilising. In light of the discussions above,
we can then infer that the wake inhibits single-mode flutter and promotes modal-coalescence flutter. Thus, its
effect on plates with added mass would be complex given the interplay between the two types of instability
noted in §3.1 and §3.2. Finally, in the absence of wake effects, we present a summary of the variation of critical
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(a) (b) (c)

Figure 6: Effect on critical speed of: (a) wake - Uc - difference (with minus without wake) upon L̄, and added
point mass (no wake), for (b) L̄ = 1, and (c) L̄ = 10 added at ×, xp = 0.625, and ◦, xp = 0.875.

speed with added mass for ‘short’ (L̄ = 1) and ‘long’ (L̄ = 10) plates in Figs. 6(b) and 6(c) respectively. These
again reinforce the finding that added mass can be either stabilising or destabilising depending upon its location
and the type of instability that gives the system’s critical speed.
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