
18th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009 
http://mssanz.org.au/modsim09 
 
 

An optimisation of the survey gap analysis technique to 
minimise computational complexity and memory 
resources in order to accommodate fine grain 
environmental and site data 
 

Manion, G.1, Ridges, M.2 

 
1  Landscape modeling & Decision Support Section, NSW Department of Environment and 

Climate Change  
2  Regional Assessment Unit, Culture & Heritage Division, NSW Department of Environment and 

Climate Change  
Email: glenn.manion@environment.nsw.gov.au 

 
 
Abstract: Survey Gap Analysis is a valuable and widely used technique to determine the adequacy of a set 
of sample collection points to span an environmental ordination space. However, when fine grain 
environmental data is required to be used over relatively large spatial domains, the unavoidable ‘greedy’ 
nature of this algorithm can easily consume computational memory resources, especially desktop 
computers which are the primary hardware platforms used by researchers for this type of analysis.  
 
This paper outlines a technique of optimising the speed of the Survey-Gap technique by dividing key 
components of the execution of the algorithm between RAM and hard-drive space. This technique exploits 
the speed of  physical memory for fine grain calculations and the capacity of hard-drive space for storing 
essential environmental distance metrics to facilitate iteration of the algorithm without recalculation.   
 
While the size of a binary file under a 32-bit operating system is usually limited to  
2^31 – 1, (2147483647) bytes to facilitate random access, the exploitation of sequential reading methods to 
allow for the file size to greatly exceed the aforementioned limit imposed under 32 bit operating systems. 
 
Survey-Gap analysis utilises the concept of Environmental Distance. That is, the sum of Manhattan 
distances between any pair of sites in a geographic domain. This is done by  ‘drilling down’ through a stack 
of environmental and climatic grid surfaces and collecting a pair of vectors of grid values from which the 
Manhattan distance is extracted. 
 
Survey-Gap analysis is more often than not applied in an iterative manner for the selection of multiple sites, 
with key lookup sections of the algorithm assessing data that remains unchanged between iterations. This 
provides the opportunity to store much of the information required on a hard drive. This method has most 
of the initial calculation work being done in the first iteration and successive runs using this data in lookup 
form. 
 
The solution used has enabled the algorithm to be applied to web-based processing and broader 
applications such as estimating the reliability of spatial predictive modelling. 
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1. INTRODUCTION 
 

A vital facet of understanding biodiversity within any bio-geographical region is the ability to 
determine species and assemblage distribution within a particular area. This is also just as important for 
understanding distribution of cultural and anthropogenic artifacts. Both these application require 
knowledge of the spatial distribution of elements from collection data.  

However, it is rare to have collection data that can be considered complete enough to make 
reasonable predictions as to the spatial distribution of the target element across under-sampled regions. In 
terms of biodiversity, several international initiatives to link museum collections online, such as the Global 
Biodiversity Information Facility (GBIF), have highlighted the shortcomings and shear costs of compiling 
databases from data that suffers from spatial inaccuracy and to a lesser extent, misidentification. Because 
all the target elements in a region can never be directly observed and counted, practical identification of the 
relative biodiversity or cultural assemblages depends on surrogate information.   

Undertaking expeditions to identify and map cultural and biological distributions has always and 
will always been extremely expensive. Competent and experienced professionals who are willing to travel 
to remote areas for months and even years are difficult to find and largely underappreciated by 
administrators and collection agencies. 
Compounding this problem are the issues of limited access to potential survey sites because of differing 
land tenure, ever-changing sovereign government policies and attitudes to scientific collection and the 
shear tyranny of distance between suitable survey sites. 

As a result, novel techniques have evolved using a combination of relatively cheap computing 
power, geographic information systems, museum collection data and access to increasingly accurate 
environmental data. This enables ‘virtual’ surveys to be done using computer software, and then, if the 
resources are available, areas that have shown to be under-sampled can be visited for directed mini-surveys. 
Survey-design methods such as gap analysis have become the tools of choice for improving the quality and 
quantity of biological and cultural data. 
 
 
2.   SURVEY-GAP ANALYSIS 
 
2.1. Overview  
 

Survey-Gap Analysis is a technique based on the finding that sampling different parts of  
the environmental space will yield a good representation of the biological diversity of a region (Faith & 
Walker, 1996), and that this technique can equally be applied to the problem of selecting survey sites. The 
survey-gap analysis tool developed by the NSW Department of Environment and Climate Change in 
Armidale, NSW (NSW NPWS, 1998; Ferrier, 2002) analyses the survey coverage of a region in relation to 
the underlying continuous environmental and geographical space. The survey-gap analysis tool adapted 
Faith & Walker’s (1996) environmental diversity (ED) measure and was developed for selecting sets of 
sites that represent regional biodiversity by providing the best possible coverage of regional environmental 
variation (Funk et al 2005).  

In the context of the survey gap analysis tool, the objects in the ED analysis are the geographical 
location of the sites, which are represented as a matrix of pair-wise distances. The matrix can be assumed to 
indicate relative underlying feature relationships. The pattern exhibited by these relationships provides 
predictions to the degree of complementarity between a particular site to any given set of sites. That is, the 
overall ED value, the p-median, will decrease at a larger rate for sites with higher ED complementarity. 
Using this property, sites that will contribute to the greatest reduction in p-median could be considered 
candidates for survey. 
 

The sort of environmental data used in conjunction with the site data are predictors such as 
temperature, rainfall and geology. For cultural artifact analyses, other surrogate layers that are used are 
distance to streams and digital elevation models. These continuous data sets are represented as GIS rasters 
which in this context can be considered as matrices. 
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2.2. Description of the algorithm 
 

All distance measures are Manhattan distances . That is, for any two sites or any two 
grid-cells in the stack of environmental raster grids, the distance between the two sites is expressed as the 
sum of the absolute values between the environmental values for the two sites in each grid. 

               g=n 

 

  Di,j = ∑ | gi – gj | 
                g=1 

where i and j are sites and g refer to a stack of n environmental grids 
 

The input grids should be range standardized and weighted if necessary prior to running  
SGA to avoid numeric overflows if too many values are summed when calculating the p-median. Create an 
evenly spaced sub-set set of data points that act as a covering mesh across the grid data. These points are 
referred to as the Demand Points. The set of current collection sites used in the SGA are referred to as the 
Survey Points.  

For each demand point, store the manhattan distance between it and its nearest survey point i.e. 
site that has the smallest manhattan distance between it and each demand point in an array 
nearest_survey_site  in the following pseudo code. 

 
set function Manhattan(i,j) to be the  manhattan distance between site i and site j 
allocate an array named tmpPMvalues of size = number of demand points 
create a grid OutputGrid to hold p-median values from SGA calculations 
 
for each grid cell  GC  
{ 
    Stage 1: initialising the  gridcell distance to each demand point 
    for each demand point  DP 
    { 
 set variable dist  = Manhattan (GC, demandPoints[DP]) 

 
set variable diff  = nearest_survey_site[DP]  -  dist 

 
 ( only add  to tmpPMvalues if  environmental distance has improved) 

if diff  >  0 then tmpPMvalues[DP] += diff 
 

    } 
 
    Stage 2: calculating the p-median… 
    set variable p-median = 0 
    for each demand point  DP 
    {     
        set variable diff =  nearest_survey_site[DP] -  tmpPMvalues[DP] 
 
        (only add to p-median if environmental distance has improved) 
        if diff  >  0 then  p-median += diff 
  
    } 
 
    ( set the output for this cell to the average p-median) 
    set OutputGrid[GC] to p-median /  number of demand points 
} 
 
The output  grid will now contain a set of continuous values from 0 to the maximum p-median. The cell 
with the largest p-median value will be the best candidate for a new survey site.  This chosen site  is then 
added to the current list of survey sites and the algorithm is re-run as many times as desired to produce a 
collection of new survey sites. 
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3. AN APPLICATION OF THE NON-OPTIMISED METHOD 
 

One of challenges for interpreting the predictions of a model describing the expected spatial 
occurrence of a species or cultural feature through space is to understand the reliability of those predictions 
(Fielding 2002). SGA can be used as an accompanying method to predictive modeling where generating 
spatial surfaces describing the distance to the p-median can be re-interpreted as a function of the 
representativeness of the input sample sites for the domain of the predictive model. As the distance to the p-
median increases for any given cell, the interpreted reliability of the model at that cell can be inferred to fall 
as the model effectively has a poorer sample of the environmental ordination space at that site from which 
to construct the model. 
 

An application of this approach was applied to a study constructing predictive models for the 
occurrence of Aboriginal features across NSW. The predictive models provide a baseline for developing 
conservation strategies to protect Aboriginal Heritage across the state. The models were developed using a 
logistic regression technique implemented in S-Plus 7.0 using the GRASP tool (Lehmann 2000) that 
implements a non-linear generalized additive model (GAM). The variables used were a suite of 
environmental layers commonly employed as surrogates for factors affecting the distribution of Aboriginal 
features in the landscape (Ridges 2006). These included various distance to water measures, various 
measures of terrain, pre-European settlement vegetation, soils, geology, and a variable describing the 
visibility of prominent points in the landscape. Distance to water measures were derived using a cost-
distance function, where the origin was streamlines, and the cost was slope adjusted for walking speed 
using Tobler’s (1993) equations. The cost-distance function was performed separately for each stream 
order, and then combined with the stream order value as a weighting (see Ridges 2006, 128). Terrain 
measures included elevation, slope, aspect, and curvature derived with standard GIS functions. 
 

The input datasets for the SGA analysis were quite large, covering NSW at a resolution of 100m 
(80,225,671 data cells). Parameters for the SGA run included the use of 50,000 demand points, 17 
environmental layers, and variable weights derived from the relative contribution of each variable to 
variance explained within the GAM model derived with GRASP. The run was performed on an average 
desktop PC (Windows XP SP2, Pentium 4 (HT) 3.2 GHz- 512KB L2 cache, System bus 800 MHz, physical 
memory 1024MB, virtual memory 2048 MB), and took 118 hours to complete.  
 

The application of an SGA technique to mapping model reliability spatially is significant in the 
context of other model testing approaches. For instance, independent data can be used to quantify model 
performance, monte-carlo type tests can quantify model consistency, and goodness-of fit measures like the 
ROC statistic (Fielding 2002, 276) quantify the ability of the model to discriminate the phenomenon of 
interest effectively. Although these approaches are commonly used to report the fitted accuracy of GAM 
models, they do not provide a spatial representation of that accuracy. In on-the-ground applications, having 
a spatial map of both the models predictions and their reliability is a powerful tool to assist more informed 
decision making. 
 
 
 
4.          POTENTIAL PROBLEMS ON DESKTOP COMPUTERS 
 

SGA is a ‘greedy’ algorithm. There is no getting away from having to visit all the data  
cells in the input grids. The collection of demand points needs to be visited twice for each grid cell, once to 
‘train’ the demand points (Stage1), and again to calculate the p-median for the grid cell (Stage 2).  

For most applications, the grid data will contain thousands, if not millions of data cells. A suitable 
number of demand points to adequately cover the grid data could be say 1000. The nature of the SGA 
technique will involve running the algorithm not just once but many times. The cell that best reduces the p-
median is added to the list of survey sites and the SGA is run again. It is quite normal to run this algorithm 
10 or more times to accumulate a set of potential survey sites. 

Thus, an estimate of the atomic operations for SGA would be 10 * 2 * 1000 * α * grid cells, 
allowing for 10 iterations with 1000 demand points and α being the number of environmental grids 
involved in the analysis. To add to this complexity, the number of grid cells will grow at a quadratic rate as 
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the resolution of the input grids increase. The data type used for such calculations would be at least a 
single-precision floating point type (4 byte) up to a double-precision floating point type (8 bytes). 

Also, under the windows operating system there is the added constraint of a 2 gigabyte  
process space for any application so a survey-gap analysis on a desktop computer could easily overflow 
available memory, thrash hard-drives and consume all CPU resources. This situation could occur with low 
numbers of relatively course data grids, and as such could make SGA somewhat unusable will all but ‘toy’ 
data. 
 
 
4.1     Solution strategy 
 

While there is no real solution to the greedy nature of the SGA algorithm, the following 
strategies have made analysis with reasonable sized data possible on desktop computers. This has involves 
a trade-off between data in memory and data on permanent hard-drive storage and the minimization of 
reads and writes to and from the hard-drive into memory.  

Given that the results of the calculations for Stage1 remain unchanged over any number of 
iterations of the SGA, the first optimization is to implement Stage1 of the algorithm as a binary file lookup 
table located on the hard drive. This is done by sequentially writing the environmental distance between 
each grid-cell and each of the demand points to a binary file located on the computer hard drive. Given that 
these distances don’t change under any iterations of the SGA algorithm this file becomes a lookup table for 
selecting each successive potential new survey site. 

It is useful to note that the access to each respective data grid cell remains unchanged under 
iteration as grids cells with no-data are skipped in the same order. Binary files on 32 bit operating systems 
using the common FAT32 format have a limit of 2147483647 bytes in size but, this is only for random 
access where the seek offset must be a signed 4 byte integer. However because this lookup table is accessed 
sequentially from the start to the end of the file for each new survey point selection the file can far exceed 
this limit. It is only limited by the physical hard-drive space on the computer running the analysis. 
 Say that one is using 1000 demand sites, the lookup table would be a sequential binary file of 
single precision values (4 bytes) where the manhattan distance between each grid cell and the  demand 
points are stored  as records.  For each grid cell, the record contains 4000 bytes and therefore, a data set 
with 20 million data cells would require a binary file of around 80 gigabytes. For the entire SGA, this 
binary file is kept open. When selecting each new potential survey point, the file pointer is simply returned 
to the start of the file and the SGA begins again. 
 To optimise the reading of this binary file, the data could be read for an entire grid row at once. So 
for a grid of 5000 columns by 4000 rows and 1000 demand points, the data is read into memory in chunks 
of 5000 * 1000 * 4 bytes, only 20meg. This would need to be done only 4000 times for selection of each 
new survey point with a grid of this size. 
 Such a strategy would enable a normal laptop computer with standard resources to run a fine grain 
SGA easily. Of course the CPU speed will be the determining factor in how long the whole analysis will 
take. The advantage to this strategy is that the lookup table only needs to be created once and is reused for 
each iteration of the SGA.  
 The second stage of the SGA uses the data read from the lookup table and is basically the same as 
described above in the pseudo code. Thus getting the first survey site will take the longest but successive 
new survey sites will be derived some magnitudes faster. If the user intended to use the lookup table for 
some future survey site selection then the binary file could be compressed and stored away or simply 
deleted if no longer required. 
  
 
 
4. AN APPLICATION OF THE OPTIMISED METHOD 
 

An opportunity to use this optimized method arose from the task of designing  a web- 
based version of the SGA tool for the GBIF-MAPA application. This application used species site data 
derived from museum datasets that were linked to the GBIF site and used environmental data in the form of 
raster files. These raster files comprised 35 ANUCLIM predictors encompassing temperature, precipitation, 
moisture and radiation indices and were in 5 km and 20 km resolutions.  The geographic area for the data 
was limited to continental Australia and as such the 5km grids had 298664 data cells and the 20km grid had 
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19312 data cells. To use datasets of the resolution described above in the non-optimised example would 
have been untenable what with a single run of the SGA taking  188 hours to complete and requiring a 
lookup table some 16TerraBytes in size, clearly not a good idea for a web application.  
 This application enables a user to utilise locations of existing specimen records and mapped 
environmental variables to create a mapped complementarity surface indicating the relative priority for 
additional survey or collection effort throughout the region of interest. The priority being based on the 
potential for an area (based on climatic conditions) to compliment existing survey effort in the region of 
interest. The choice of environmental rasters with 5km or 20km resolution was the first way to reduce the 
complexity of the algorithm. Using 1000 demand points would therefore require a lookup file of 298664 * 
1000 * 4 bytes resulting in a 1.2Gig lookup file for the 5km dataset and 19312 * 1000 * 4 bytes resulting in 
a 77Meg lookup file for the 20km dataset. 
 Using a 5km resolution grid set for continental Australia with 298664 data cells, 1000 demand 
points and site data for genus Macropus from the GBIF data set,  a 10 iteration SGA took 60 seconds to 
create the lookup table and each iteration to extract the p-median grid and choose the optimal site took 5 
seconds. Thus the whole operation took under two minutes as opposed to approximately ten minutes if the 
non-optimised version was used for this purpose. 
  
  
5. DISSCUSSION AND CONCLUSIONS 
 

As can be seen by the two examples described above, the SGA algorithm can be applied to widely  
varying applications. Neither the optimized or the non-optimised methods serve to replace each other but 
serve to complement the application of SGA to different problems. The non-optimised method traded 
computation time for increased spatial resolution and had the advantage of only requiring one iteration 
whereas the optimized version was specifically targeted to multiple iteration and traded spatial resolution 
for computational efficiency. 
 A .NET version of SGA application that allows for the use of the optimized and non-optimised has 
been produced for PCs running Windows XP or Vista. It will be available for download from the DECC in 
the middle of 2009. It allows the user to provide their own site and environmental data rather than the set 
provided on the GBIF site. It also allows the user to use the lookup table method for multiple iterations of 
the SGA or to use fine grain data and just do a single iteration with no lookup table. When using multiple 
iterations on the .NET version, a priority raster surface is produced for each iteration. The best site derived 
each iteration is then set as a new survey site. The SGA is then run for the next iteration. This for N 
iterations, their will be N priority surfaces created and a table containing the N selected best potential 
survey sites. 
 
 In conclusion, the ‘greedy‘ nature of the Survey Gap Analysis algorithm can not be universally 
solved for all applications. The choice of methods will be determined by the user’s requirements for  spatial 
resolution (the choice of grid resolution), the predictive accuracy (the number of demand points) and the 
choice of single or multiple iterations of the SGA (the type of output product). Thus Survey Gap Analysis 
cannot be considered a ‘one size fits all’ application but one that is contingent on the application user’s 
research requirements. 
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