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Abstract: A metapopulation consists of interacting populations, each occupying distinct spatially separated
patches of habitat. Modelling these populations has become increasingly important because anthropogenic impacts
on spatially homogeneous populations have led to increased habitat fragmentation and accidental introduction of
invasive species. We employ a two-parameter continuous-time Markovian model for patch occupancy, which has
been used previously to study the spread of disease in closed populations. This model takes into account proximity
of patches, rather than any detailed spatial structure. Our model will be particularly suited to studying species
occupying marine environments that are subject to complex ocean currents, where the connectivity between habitat
patches is dynamic, and most applicable to invertebrate and plant species that are dispersed passively by these
currents.

We address the problem of designing an optimal sampling scheme that specifies when to observe the population in
order to obtain the most accurate and precise estimates of the parameters. Our approach is based on approximating
the true likelihood of observing the numbers of occupied patches at a particular sequence of times by a much
simpler Gaussian likelihood, obtained from a diffusion approximation of the underlying discrete-state Markov
process. This approximation is known to be highly accurate when the number of patches is sufficiently large.
Furthermore, when coupled with an appropriate optimization technique such as the Cross-Entropy Method (used
here), the approximation gives rise to a robust procedure for determining the optimal observation schedule, one
which is considerably simpler than would otherwise be possible.

We investigate the performance of two design criteria: ED-optimality and a particular Maximin-optimality criterion.
ED optimal design stems from the well known D-optimal design, but where the design is chosen to maximize the
expected value of the D-optimality criterion (the determinant of the Fisher Information matrix), given priors on
the parameters. The Maximin-optimal design maximizes the minimum value of the D-optimality criteria given the
priors. These criteria can yield robust designs, which allow one to incorporate prior belief about the parameter
values before any data is collected. We investigate ‘informative’ and ‘less informative’ priors for each parameter
in combination with both design criteria. By assuming a true parameter set for a given metapopulation, we are
able to compare kernel density estimates of the maximum likelihood estimator under the various combinations of
optimality criteria and prior distributions. We illustrate our methods with reference to a model for the spread of
crown of thorns starfish (Acanthaster planci) amongst the 55 islands comprising the Ryukyu group in Japan.

Our results suggest that ED-optimality criteria can sometimes lead to bimodality in distribution of the maximum
likelihood estimator. However, estimation appears to be greatly improved if the ED criteria is used in conjunction
with less informative priors for the parameter that governs the rate of drift towards equilibrium. Interestingly, our
Maximin-optimality criteria does not give rise to such bimodality, but does result in a considerable loss in precision.
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1. INTRODUCTION

In recent decades metapopulations have become a focal point of ecological research, as scientists grapple
with understanding the consequences for species survival of habitat fragmentation and the spread of invasive
species (Dobson 2003, Gilpin and Hanski 1991, Hanski 1999). Here we employ a simple two-parameter
metapopulation model, which has been used widely in epidemiology, known as theSIS Epidemic (Susceptible to
Infected to Susceptible) (Weiss and Dishon 1971), and more recently in ecology, being a stochastic analogue (Pollett
2001, Ross et al. 2006, Ross et al. 2009) of the standard Levins model (Levins 1969). One of the challenges
practitioners face is obtaining precise estimates of the parameters from observational data. We present methods
for obtaining an optimal observation schedule that are robust to our initial uncertainty about the true parameter
values, through the use of appropriate prior probability distributions. We employ informative and relatively diffuse
priors for the two parameters of our model to create four combinations of jointly independent priors. The priors are
examined in conjunction with two optimality criteria used in experimental design: (i) the ED-optimality criterion
(Pronzato and Walter 1985) and (ii) a Maximin-optimality criterion (Pronzato and Walter 1988).

The most common optimality criteria used in experimental design are based on the Fisher Information Matrix,
which is defined in terms of the likelihood of a set of observations under a given model. Ordinarily, for models
such as ours, the likelihood is difficult to obtain analytically. We therefore rely on approximations, utilizing a
Gaussian diffusion approximation of the underlying discrete-state Markov process. This method has been used
successfully for parameter estimation for a number models commonly used in ecology and population biology
(Ross et al. 2006, Ross et al. 2009), and which we exploit here in concert with the Cross-Entropy (CE) Method to
find the optimal observation times.

We use simulation to demonstrate how incorporating prior information can change attributes of the maximum
likelihood estimator. The spread of the crown of thorns starfish (Acanthaster planci) in the Ryukyu islands of Japan
is used as an illustrative example of the methods. Recommendations are made, that apply specifically to our model,
regarding the best choice of optimality criteria and prior probability densities.

2. MODEL

Let N denote the number of patches of habitat. Each patch is identified as eitheroccupied or unoccupied. There
are two parameters,λ andµ (both > 0), being, respectively, the colonization rate and the local extinction rate.
Our model is a birth-death process whose staten represents the number of occupied patches. Its state space is
S = {0, 1, 2, . . . , N} and its non-zero transition rates areq(n, n + 1) = λn(1 − n/N) andq(n, n − 1) = µn.

Since our model assumes that the rate of colonization is independent of distances between patches, we advocate
that it is particularly appropriate for studying species of invertebrates and plants in marine environments, where
dispersal is passive (via ocean currents) and can follow complex dynamic patterns. Yamaguchi’s (1986) description
of A. planci infestations in the 55 islands of the Ryukyu group in Japan (where outbreaks have led to serious
destruction of coral reef communities), suggests that our model withN = 55 (islands/patches) would be appropriate
for studying the spread of the infestation.

It has been observed (Ross et al. 2006) that estimates of the parametersλ andµ are strongly correlated. This has
two undesirable consequences: (i) it can be difficult to visualize confidence regions for(λ, µ), and (ii) it is difficult
to identify appropriate prior distributions that incorporate the dependence between the parameters. Fortunately we
can avoid these problems by re-parameterizing our model usingα = λ − µ (α > 0) andρ = µ/λ (0 < ρ ≤ 1).
The process typically exhibits two phases over the time-scale of interest: (i) an early growth phase, and (ii) an
equilibrium phase (strictly speaking,quasi-equilibrium because extinction will happen eventually). These phases
are illustrated in Figure 1. As will become apparent from (1) below,ρ determines the position of the equilibrium
neq (≈ N(1 − ρ)) andα governs the rate of drift towards it.

3. METHODS

Approximating the likelihood. Maximum likelihood is the most widely used statistical method of parameter
estimation. It involves constructing a joint probability density functionL, being the likelihood of observing a
particular set of data, which here are the numbers of occupied patches observed at a particular sequence of times,
given fixed parameter values, and then maximizing this function over all parameter valuesθ in the parameter
spaceΘ (the set of all allowable parameter values). For our model, and indeed for any Markov process, the
likelihood is given byL(θ; n1, . . . , nd|n0) =

∏d
i=1 p(ni, ti|ni−1, ti−1), where for usθ = (α, ρ), and where

p(ni, ti|ni−1, ti−1) is the probability of the process making a transition from stateni−1 (occupied patches) at time
ti−1 to ni at timeti, d is the number of observations, andn0 is the initial state (at timet0 = 0).
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Figure 1. Simulated colonization of the Ryukyu islands byA. planci over a five year period usingN = 55, λ = 4
yr−1 andµ = 0.5 yr−1.

Even for simple Markov processes such as birth-death processes, it is usually impossible to obtain analytical
expressions for the transition probabilities. Furthermore, even when it is possible, these expressions may not
allow the likelihood to be maximized easily. This is certainly true of our model. We therefore rely on a Gaussian
diffusion approximation to obtain an approximating likelihood, which is valid in the limit asN becomes large.
These approximations have been used successfully for a family of population models known asdensity dependent
Markov chains, and we refer the reader to Pollett (2001), Ross et al. (2006) and Ross et al. (2009), and the references
therein, for more information on their application in population biology. The likelihood from the resulting diffusion
approximation is given by

L(α, ρ; n1, . . . , nd|n0) = (2π)−d/2|Σ|−1/2 exp
(

− 1
2 (n − m)Σ−1(n − m)′

)

,

wheren = (n1, . . . , nd) is the vector of observed numbers of occupied patches at timest1, . . . , td andm =
(m(t1), . . . , m(td)) is the corresponding vector of expected numbers obtained from the approximation:

m(t) := N
x0xeq

x0 + (xeq− x0)e−αt
, (1)

wherex0 := n0/N is the initial proportion of occupied patches andxeq := 1 − ρ is the (quasi-) equilibrium
proportion of occupied patches. The elements of thed × d covariance matrixΣ are

Σi,j = Cov(n(ti), n(tj)) =











Nv(ti) (i = j)

Nv(tmin(i,j))

(

x0+(xeq−x0)e
−αtmax(i,j)

x0+(xeq−x0)e
−αtmin(i,j)

)2

e−α|ti−tj | (i 6= j)

where

v(t) = x0xeq

[

(1 + ρ)
(

x3
0(e

2αt − 1) + 2(xeq− x0)
3(1 − e−αt)

− 6(xeq− x0)x
2
0(1 − eαt) + 6(xeq− x0)

2x0αt
)

− x0xeq

(

x2
0(e

2αt − 1) − 4(xeq− x0)x0(1 − eαt)

+ 2(xeq− x0)
2tα

)]

/
[

2(1 − ρ)e2αt(x0 + (xeq− x0)e
−αt)4

]

.

Optimal observation. Carefully designed experiments promise the practitioner significant rewards over other
designs having the same constraints: typically a greater experimental efficiency resulting from an increase in
the precision of point estimates with fewer samples or observations. Optimal experimental design is a branch
of statistics where the aim is to find a design that maximizes some objective function related to the efficiency
of the experiment. Traditionally, optimal design has focussed on linear models and generalized linear models,
with little attention given to optimal observation of stochastic processes. This is to the detriment of fields such
as epidemiology and ecology where stochastic processes provide much more suitable models than many of the
classical linear and non-linear models routinely adopted in statistics. The optimal observation of Markov processes
has been considered by a small number of authors (see Cook et al. (2008), Pagendam and Pollett (2008), and the
references therein), and has application in both natural and controlled experiments.

Traditional (frequentist) optimal designs generally focus on optimizing some function of the Fisher Information
matrix, I(θ;y), which is the inverse covariance matrix of the maximum likelihood estimator. For us it is
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approximated by way of the diffusion approximation and has entries

Ii,j =

(

∂m

∂θi

)

Σ−1

(

∂m

∂θj

)′

+ 1
2 trace

(

Σ−1

(

∂Σ

∂θi

)

Σ−1

(

∂Σ

∂θj

))

.

We will assume that we have observed the staten0 of our metapopulation at timet0 = 0 and that we wish to
scheduled further observations over the subsequenttmax years (for the numerical examples presented below,d = 3
andtmax = 5). This translates to finding the optimal set of observation timest⋆ = (t⋆1, . . . , t

⋆
d) (where0 < t1 <

t2 < · · · < td < tmax) in the design spaceT (the set of possible schedules) that minimizes the volume of the
confidence ellipse for the maximum likelihood estimate ofθ = (α, ρ). The most popular optimality criterion used
in the literature is D-optimality:

t⋆ = argmax
t∈T

det(I(t, θ)).

The main problem for models such as ours is that the optimal design depends on the parameters. This means
that in order to obtain the schedule which is optimal for estimatingα andρ, we already need to know their true
values. The most obvious solution is to simply use a ‘best guess’. However, if this initial guess is poor it can have
potentially disastrous consequences. A much better option is to incorporate prior information into the experimental
design to determine an optimal schedule that is robust to a wide range of true parameter values. Whilst the idea
of using prior probability distributions stems from a Bayesian statistical paradigm, Pronzato and Walter (1985)
and Pronzato and Walter (1988) introduced criteria for using priors in the design phase, but where the design
criterion remains typically frequentist and where the data are collected with a view to analysis using traditional
frequentist methods. Bayesian optimal design is another option; one might choose to maximize the Kullback-
Leibler divergence between prior and posterior distributions for example (see Chaloner and Verdinelli 1995), but
such designs will not be considered here.

We first consider the ED-optimality criterion proposed by Pronzato and Walter (1985), where the expected
determinant ofI under the prior distribution is maximized:

t⋆ = argmax
t∈T

∫

det(I(t, θ))p(θ)dθ.

Another robust optimal design criterion proposed by Pronzato and Walter (1988) is Maximin optimality. This acts
to maximize the minimum value ofI under the prior distribution:

t⋆ = argmax
t∈T

min
θ∈Θ

det(I(t, θ)).

It should be noted that the Maximin-optimal design depends only on those parameter values with non-zero prior
probability density and not on the actual magnitudes of the densities themselves.

For the purposes of illustration, we shall examine the effects of two priors (one more informative than the other)
for each ofα andρ. We will take the true value ofα, governing the net rate of spread ofA. planci, as being
3.5 yr−1 and our priors forα are given two different functional forms. The informative prior is a gamma density
fα(α; q, r) = αq−1rq exp(−rα)/Γ(q) (whereΓ(·) is the gamma function), with a mean of3.5 and variance of
0.72. The less informative prior is a piecewise-continuous density comprising a uniform density over the interval
[0, u] and an exponential density over the interval(u,∞):

fα(α; p, d, u) =

{

p/u (0 ≤ α ≤ u)

(1 − p)de−d(α−u) (α > u)
(2)

where
d =

p

u(1 − p)
. (3)

For our example, we constructed the less-informative prior forα by takingu = 10 andp = 0.9. The resulting prior
has a mean and variance of approximately 5.61 and 10.98 respectively.

In light of very little information aboutα we advocate constructing a prior as in (2) by following three simple steps:

1. Define an interval[0, u] (u < ∞) which is considered to be the most likely range of values ofα.

2. Define a probabilityp (0 < p < 1) quantifying the level of certainty thatα lies within the interval[0, u].
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Figure 2. Prior probability density functions forα andρ: (a) informative priors and (b) less informative priors.
Location of true parameter values represented by vertical lines.

α Prior ρ Prior Criterion Time of Observations (years)

Informative Informative ED-Optimal 0, 1.8684, 3.2874, 5
Informative Less Informative ED-Optimal 0, 1.5771, 2.8004, 5

Less Informative Informative ED-Optimal 0, 1.1559, 2.8838, 5
Less Informative Less Informative ED-Optimal 0, 1.0906, 2.7323, 5

Informative Informative Maximin 0, 0.0385, 4.9615, 5
Informative Less Informative Maximin 0, 0.0385, 4.9615, 5

Less Informative Informative Maximin 0, 0.0385, 4.9615, 5
Less Informative Less Informative Maximin 0, 0.0385, 4.9615, 5

Table 1. Optimal days for observations under various priors and optimality criteria (day zero corresponds to the
observationn0 prior to designing the experiment).

3. Identify the appropriate parameter of the exponential distribution using (3), which ensures the prior
probability density is continuous atu.

The true value ofρ for the spread ofA. planci was taken as1/8 and both informative and less-informative priors
were taken to have a beta density,fρ(ρ; a, b) = ρa−1(1 − ρ)b−1/B(a, b) (whereB(·, ·) is the beta function). For
the informative prior we set the mean equal to1/8 and the variance equal to0.01, while for the non-informative
case we set the mean to0.5 and the variance to1/12, so that the density is uniform over[0, 1] (see Figure 2).

The optimal observation times under our different priors and objective functions were obtained using an easily
implemented Cross-Entropy method similar to that presented in Pagendam and Pollett (2008).

4. RESULTS

Table 1 provides the optimal times for observation of the metapopulation for the various combinations of the priors
with the two optimality criteria. Each observation schedule was computed in Matlab on a 2.4 GHz Intel Core Duo
laptop with 2GB of RAM in roughly 5 minutes. We note that all of the observation schedules make use of the full
five years and that this is afeature of the optimal design rather than a constraint.

Figures 3(a) and 3(b) show kernel density estimates of the maximum likelihood estimator under the various
observation schedules given that the true parameter values areα = 3.5 yr−1 andρ = 1/8 (corresponding to
λ = 4 yr−1 andµ = 0.5 yr−1). Each figure was created by simulating 100 trajectories of the model using the
true parameters and then estimating the parameters under the corresponding observation schedule using maximum
likelihood.
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(a) ED-optimal schedule: informative priors on both parameters (top left), α

informative andρ less informative (top right),α less informative andρ informative
(bottom left), and, less informative priors on both parameters (bottom right).

(b) Maximin-optimal schedule: since all four observation schedules were identical,
only a single kernel density estimate is presented.

Figure 3. Kernel density estimates of the maximum likelihood estimators.

5. DISCUSSION

Our results show that different priors and optimality criteria can have significant effects on the distribution of the
maximum likelihood estimator. For the example ofA. planci in the Ryukyu islands, we favour the use of the ED-
optimality criteria in conjunction with a less-informative prior onα. The ED-optimal observation times show that
in two of the four plots there is a second mode in the distribution which appears nearα = 25. The precise reason
for its presence is unclear. However, it seems that the design is compromised by averaging over our priors. We can
see from Table 1 that the one important difference between the ED-optimal observation schedules is the timing of
the first observation, which is earlier when the prior forα is less informative. It appears that for the two bimodal
plots, the first observation is sufficiently late that much of the information about the drift can be lost. The result
appears to be a systematic positive bias in the estimator ofα. It is likely that a prior that assigned less probability
mass to lower values ofα would avoid such problems, but this would require the practitioner to have better prior
knowledge and this is not always the case. Interestingly, when less informative priors are used forα the ED-optimal
scheme performs very well and there is no bimodality.

The Maximin-optimal observation schedules were identical for each of the priors, since the design criteria is only
dependent on the domain of the priors and not on the magnitude of the probability densities. Under the Maximin-
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optimal design,t1 was to be taken as soon as practicably possible aftert0, whilst t2 was to be taken as close to
t3 = 5 as possible. For practicality, we imposed the constraint that observation times were a minimum of 2 weeks
apart. In simple terms, the Maximin-optimal design attempts to maximize the precision of the maximum likelihood
estimator under the worst possible set of parameters, given our initial state. For our model, this is a design that
maximizes the precision given that we have started in quasi-equilibrium (i.e. no initial drift is observed). For
studies such as the spread ofA. planci, this design criteria is likely to be far too pessimistic to be of practical use.
Comparing Figure 3(b) to Figure 3(a) illustrates just how poorly the design performs given that our metapopulation
did not begin in quasi-equilibrium, with theα being grossly under-estimated the majority of the time.

For colonisation of the Ryukyu islands byA. planci, we have shown that the use of ED-optimal designs with
informative priors forα can lead to estimates ofα that are seriously biased. In addition, we have shown that
the Maximin-optimality criteria of Pronzato and Walter (1988) considered here is of little practical use for our
model. Future avenues for research could consider the use of other more appropriate Maximin-optimality criteria
that incorporate the magnitude of the prior probability densities.
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