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Abstract: Effective management of river ecosystems requires knowledge of the interrelationships between 
biological, chemical and geomorphological processes and patterns. This is a complex challenge, and there are 
significant gaps in our understanding of these interrelationships. For example, the response of biological 
communities to geomorphological changes in rivers is particularly poorly understood. These knowledge gaps 
are compounded by the lack of coherent biological, chemical and geomorphological datasets for many rivers, 
limiting the extent to which traditional data analysis and modelling techniques can be applied. 

Here we describe the application of a new technique, Structural Equation Modelling (SEM), to the investigation 
of biological, chemical and geomorphological data collected from rivers across England and Wales. The SEM 
approach is a multivariate statistical technique enabling simultaneous examination of direct and indirect 
relationships across a network of variables. Further, SEM allows a-priori conceptual or theoretical models to be 
tested against available data. For example, a-priori models can be developed in collaboration with river 
managers and then evaluated using SEM as part of participatory modelling projects. This is a significant 
departure from the solely exploratory analyses which characterise other multivariate techniques. Bayesian 
approaches can also be applied within the SEM framework, offering the opportunity to address challenges such 
as incomplete datasets and non-normal data distributions. Such challenges are common in the analysis of spatial 
patterns associated with riverine ecosystems.  

We took biological, chemical and geomorphological data collected by the Environment Agency for 700 sites in 
rivers across England and Wales, and created a single, coherent dataset suitable for SEM analyses. Biological 
data cover benthic macroinvertebrates, chemical data relate to a range of standard parameters (e.g. BOD, 
dissolved oxygen and phosphate concentration), and geomorphological data cover factors such as river 
typology, substrate material and degree of physical modification. We developed a number of a-priori theoretical 
models based on existing understanding of river ecosystems. These models were able to explain correctly the 
variance and covariance shown by the datasets, proving to be a relevant representation of the processes 
involved. The models explained around 80% of the variance in indices describing benthic macroinvertebrate 
communities. Dissolved oxygen was of primary importance, but geomorphological factors, including river 
habitat type and degree of habitat degradation, also had significant explanatory power. The model produced new 
insights into the relative importance of chemical and geomorphological factors for river macroinvertebrate 
communities. The SEM technique proved powerful, for example able to deal with the co-correlations that are 
common in rivers due to multiple feedback mechanisms.      

In this paper we also examine how SEM could be used to guide data collection and support decision-making 
(DM) for river ecosystems. We highlight the benefits of a Bayesian approach to solving SEM, especially in the 
context of supporting DM. We demonstrate how both simple and more complex a-priori conceptual models can 
be used in SEM. We explore whether greater complexity, which may add credibility to a model, increases 
explanatory power compared to relatively simple models. We examine how subjective judgements that are 
inherent to the development of a-priori models, for example relating to the separation between individual habitat 
types, influence the outcomes and interpretations of SEM analyses. Our experience highlights the importance of 
close collaboration with potential users throughout each step of the SEM framework, and we examine how this 
collaboration might be put into practice. 
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1837



Bizzi et al., Analysing biological, chemical and geomorphological interactions in rivers using SEM 

1. INTRODUCTION 

Biologists and geomorphologists are increasingly combining their research efforts to improve our theoretical 
understanding of the complex interactions between geomorphological, chemical and biological processes within 
fluvial ecosystems (Vaughan et al., 2007). Research at both local and catchment/regional scale has contributed 
to our knowledge of key drivers, processes, temporal and spatial scale interactions affecting these ecosystems. 
Despite these advances, our understanding of geomorphological, chemical and biological interactions in rivers 
remains limited. Compared to the physically-based models that simulate hydrological and hydraulic conditions 
in rivers, or to water quality models, in fluvial ecology models are often data driven, black box, or expert based. 
Exploratory multivariate statistical analyses are often used to analyse fluvial ecosystems (Borcard et al., 1992; 
Turak and Koop, 2008) primarily because of the large number of variables involved and our partial theoretical 
understanding of these systems. Such analyses do not always lend themselves to hypothesis testing, and do not 
always allow clear process interpretations of the outcomes to be made. These are two key challenges if our 
understanding of fluvial ecosystems is to continue to advance.   

Although partial and uncertain, our knowledge of fluvial ecosystems remains crucial for management that 
increasingly seeks to deliver integrated, cost-effective policies and actions that produce multiple benefits. 
However, there is a clear need to create better vehicles for knowledge exchange amongst scientists and decision 
makers. Significant improvements in the field of decision support systems (DSS), especially related to water 
resource management, have been made in the last thirty years (Castelletti and Soncini-Sessa, 2007; Loucks and 
Van Beek, 2005). Nevertheless, the uptake and application of DSS by decision makers remains limited. 
Amongst a number of reasons for this is the complexity of many DSS, which necessitates training and expert 
knowledge to run the DSS and to interpret the results (Newman et al., 1999). An efficient trade-off between 
complexity – for example a more complete representation of spatial and temporal process interactions - and 
simplicity – towards the need for synthesis and clarity in representing our understanding of any system in a 
decision-making context –  is a key challenge. A framework for model development that enables such trade-offs 
to be made could significantly advance the development of useful models.  

This paper aims to use Structural Equation Modelling (SEM) to test a number of theoretical models regarding 
geomorphological, chemical and biological process interactions in rivers, and how these interactions give rise to 
spatial patterns in these ecosystems. Benthic macroinvertebrates have been chosen as a specific group used in 
assessments of rivers that are expected to respond to both chemical and geomorphological conditions, and as a 
link between primary producers and higher organisms. Our application of SEM adopts a confirmatory approach, 
developing and testing process-based conceptualizations of the system. The paper also aims to discuss the 
strengths of the SEM framework that we believe make it well suited as a tool to stimulate interaction between 
scientists and decision makers in the context of fluvial ecosystems.  

2. THE SEM FRAMEWORK AND MODEL RESULTS 

SEM is a multivariate statistical technique that encompasses path and factor analysis (Grace, 2006). Within the 
SEM framework, a-priori conceptual or theoretical models are evaluated against data. These a-priori models 
create an expected covariance structure, which is tested against the covariance matrix from observed data. Note 
that in contrast to conventional statistical models, where rejection of a null hypothesis is sought, one objective of 
SEM is acceptance of the null hypothesis (i.e. where p≥0.05 the model provides an acceptable fit to the data 
when testing at the 0.05 level of significance). An optimization algorithm, the Maximum Likelihood method 
was used in this paper, fits the parameters of the model to minimize the difference between the observed and 
model-predicted covariances. SEM uses the covariance structure to infer process interactions within a system, 
and as such is limited mainly by the completeness and quality of the data available to describe a system. 
Because of this, the models developed with SEM must be based on robust theoretical understanding of process 
interactions within a system, rather than simply using potentially spurious covariances to identify additional 
process interactions. An a-priori model can be accepted, rejected, or modified based on the outcomes of the 
analyses. The particular advantages of SEM for our application include: the ability to test direct and indirect 
effects of explanatory variables on dependent variables; the incorporation of latent and composite variables 
which are variables that are of conceptual or theoretical interest yet are not measured directly; and the use of a 
Bayesian approach to deal with non-normality and incomplete datasets.  

Three national datasets developed by the Environment Agency of England and Wales (EA) have been analysed 
in this work: the biological and the chemical General Quality Assessment (GQA) databases, and the river habitat 
survey (RHS) database. RHS is a methodology developed in UK to assess the physical characteristics of rivers 
(Raven et al., 1998). GQA chemistry and RHS sites were chosen where they were within 500 m of GQA 
biology sites. We developed a complete database of 370 sites and a second database of 750 sites where some 
chemical data were missing. Several a-priori models were developed and tested using SEM: a chemical model, a 
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fluvial habitat model and a unified model (see Figure 1b-d). We also developed a multiple regression model 
(Figure 1a) to compare with the process based models. Indices were used to describe macroinvertebrate 
community composition. We chose Average Score Per Taxon (ASPT) as an index sensitive to organic pollution 
(Armitage et al., 1983), and Lotic-invertebrate Index for Flow Evaluation (LIFE) as an index potentially 
sensitive to geomorphological condition (Extence et al., 1999). Our SEM analyses sought to explain spatial 
variation in these indices, using “benthic macroinvertebrates” as a latent variable with observed ASPT and LIFE 
as indicators.  

The chemical model (Figure 1b) uses observed 90th percentile BOD concentration (BOD90), annual average 
orthophosphate concentration (Orth avg), and 10th percentile oxygen saturation (Ox10) as predictor variables. 
These data are taken from 3 years of monthly sampling prior to the collection of biological data at the relevant 
GQA biology site. Biological data comes from an average over one year where each site is sampled twice, in 
autumn and spring. The latent variable “effective oxygen” was created as a biologically-relevant representation 
of dissolved oxygen concentration. Although Ox10 is an indicator variable for this latent, effective oxygen 
conceptually includes additional parts of the temporal distribution of dissolved oxygen concentration that are not 
captured by the observed data, for example sags in dissolved oxygen concentration during the night. BOD90 and 
Orth avg, represented by a composite variable ‘Chemicals’, are assumed to directly influence ASPT, but also to 
indirectly influence both ASPT and LIFE through their control on dissolved oxygen concentration. The 
influence of BOD90 on dissolved oxygen is self-explanatory. Orth avg is assumed to influence dissolved 
oxygen concentration through control on rates of primary productivity and thereby rates of respiration and 
decomposition of organic material. This model provided a satisfactory fit to the observed data (p≥0.05), and the 
relative importance of individual paths is shown by the path coefficients in Figure 1b.   

The Fluvial Habitat model uses only variables 
from the RHS as predictor variables. We 
constructed the latent variable “substrate” using 
the observed occurrence of cobbles and boulders. 
This latent effectively represents a gradient of 
river habitat typology, moving from upland to 
lowland reaches with gradually decreasing bed 
sediment size. The composite variable 
“morphological features” represents a number of 
key habitat features within fluvial ecosystems. 
Finally, habitat modification score (HMScore), 
an index developed by the EA to account for the 
occurrence of engineering modifications with the 
surveyed site, is used as a representation of 
habitat degradation. Again, this model provided 
a satisfactory fit to the observed data (p≥0.05), 
and the relative importance of individual paths is 
shown by the path coefficients in Figure 1c.   

In the unified model (Figure 1d), the chemical 
and fluvial habitat models have been joined 
together. The composite “morphological 
features” was removed because the influence of 
this variable and its components was shown to 
be not statistically different from zero (p≥0.05). 
The unified model provided a satisfactory fit to 
the observed data (p=0.92). The unified model 
explains 91% of the variance in LIFE and 75% 
of the variance in ASPT. In comparison, the 
multiple regression model (Figure 1a) was able 
to explain 58% of the variance in both indices. In 
contrast to the outcomes of multiple regression, 
our SEM analyses enabled us to identify both 

direct and indirect influences of explanatory variables on LIFE and ASPT (see Table 1). By creating the 
network structure in Figure 1d a-priori, and subsequently evaluating the network against observed data, we were 
also able to test our conceptual understanding of the system far more effectively than could be achieved through 
the multiple regression analyses in Figure 1a. 

UNIFIED MODEL 

Total 
effects Chemicals 

Orth 
avg BOD90

Effective 
Oxygen substrate HMScore

Benthic 
macroinv. -0.275 -0.089 -0.226 0.624 0.598 -0.188 

ASPT -0.453 -0.146 -0.373 0.435 0.418 -0.131 

LIFE(F) -0.262 -0.085 -0.215 0.594 0.57 -0.179 

Direct 
effects Chemicals 

Orth 
avg BOD90

Effective 
Oxygen substrate HMScore

Benthic 
macroinv. 0 0 0 0.624 0.28 -0.188 

ASPT -0.262 0 0 0 0 0 

LIFE(F) 0 0 0 0 0 0 

Indirect 
effects Chemicals 

Orth 
avg BOD90

Effective 
Oxygen substrate HMScore

Benthic 
macroinv. -0.275 -0.089 -0.226 0 0.319 0 

ASPT -0.192 -0.146 -0.373 0.435 0.418 -0.131 

LIFE(F) -0.262 -0.085 -0.215 0.594 0.57 -0.179 

Table1. Total, direct, and indirect standardized effects on 
ASPT, LIFE and the latent benthic macroinvertebrates for 

the Unified model (Figure 1d).  The effects reflect the 
change in standard deviation units of the dependent 
variable that is induced by a change of one standard 

deviation unit in the explanatory variable. These effects 
provide a means to assess the relative importance of 

different direct, indirect and total paths within the model. 
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Figure 1.  The four models developed: a) Regression model; b) Chemical model; c) Fluvial Habitat model; d) The Unified model. Numbers next to single-headed arrows are 

standardized path coefficients, next to double-headed arrows are co-variances, and in boxes are R2 values. Standardised path coefficients reflect the change in standard 
deviation units of the dependent variable due to a change of one standard deviation in the explanatory variable. They provide a means of assessing the relative importance of 
different paths in the model. Chi-square, degrees of freedom, and p values are also shown. Where p≥0.05 the model provides an acceptable fit to the data when testing at the 
0.05 level of significance. Legend for the chemical variables: 90th percentile BOD concentration (BOD90), annual average orthophosphate concentration (Orth avg), and 10th 

percentile oxygen saturation (Ox10)   1840
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3. THE ROLE OF LATENT VARIABLES 

Latent variables within SEM enable components of theoretical or conceptual interest to be included 
within the network, even if they are not directly measured. These latent variables are usually associated 
with a number of indicator (observed) variables. These indicator variables are assumed to be 
reasonably, although not perfectly, correlated with the latent variable, and to be able to provide 
information about the latent variable (Grace, 2006). Three latent variables have been created in the 
work described in this paper: 

• The variable “benthic macroinvertebrates” draws on the two biological indices LIFE and ASPT. 
Although the indicators showed different degrees of sensitivity to individual predictor variables, 
for example LIFE was particularly sensitive to oxygen concentration and ASPT to BOD 
concentration, they generally showed similar response trends to the same predictor variables. 
Conceptually, this latent variable represents an integrated assessment of benthic macroinvertebrate 
community composition, and from the decision-making perspective provides a simplified 
interpretation of the biological consequences of chemical and geomorphological processes. From 
an academic perspective, the use of this type of biological latent variable offers the potential to 
create and test integrated biological indices to evaluate the impact of chemical and 
geomorphological processes on multiple groups of organisms.  

• The latent variable “effective oxygen” is a biologically-relevant representation of dissolved oxygen 
concentration. Conceptually it includes parts of the temporal distribution of dissolved oxygen 
concentration, such as night-time dissolved oxygen sags, that are not captured by the observed 
dissolved oxygen data. Using this latent variable within our models provided both an increase in 
the variance of LIFE and ASPT explained (approximately 91% for LIFE and 75% for ASPT 
compared to 58% for both indices in the regression model). The strength of the path coefficients 
describing the effect of oxygen on benthic macroinvertebrates are also increased by the 
introduction of the latent variable effective oxygen. In the regression model the coefficients were 
0.36 for ASPT and 0.5 for LIFE (Figure 1a), in Figure 1d the coefficients were 0.44 for ASPT and 
0.60 for LIFE. A further attractive feature of latent variables within the SEM framework is the 
ability to incorporate measurement error related to the indicator variables within the analysis, for 
example e5 in Figures 1b and 1d. Although we have not included measurement error in our 
analyses to date, because of the lack of realistic estimates for the observed data, including such 
estimates would enable us to correct for the downward bias that is likely to be present in both the 
path coefficients and estimate of variance explained because of measurement error.     

• The latent variable “substrate” in the fluvial habitat model has two indicator variables, the 
occurrence of boulders and of cobbles. Our initial analysis of the RHS database suggested 
approximately 40 variables describing the physical characteristics of a river could be useful for our 
analyses. However, the covariance between many of these variables was high, and inclusion of 
each individual variable within our SEM analysis was not useful. By creating the latent variable 
substrate we have simplified the network of variables to be understood without losing explanatory 
power – the variance in LIFE and ASPT explained by the fluvial habitat model in Figure 1c was 
slightly higher (55%) that in a multiple regression based on all 40 potentially useful variables in 
the RHS. The latent substrate is likely to represent a gradient of river habitat typologies, moving 
from coarse bed material in upstream reaches to finer bed material in lowland reaches. Other latent 
variables describing a similar gradient, but composed of different indicator variables, could have 
been created. The particular choice of latent and associated indicator variables illustrates one 
example of subjective choice affecting the SEM analyses. The conceptual and theoretical 
differences between individual latent variables and their specific indicators, and the impacts of 
these choices for the SEM analyses, have not been investigated in our work, but deserve further 
study.   

4. SIMPLICITY VERSUS COMPLEXITY IN MODEL DEVELOPMENT  

The SEM framework provides a number of structural ways of balancing complexity and simplicity 
within the model network. The use of latent variables enables theoretical concepts to be included, 
supporting aggregation and increased simplicity within a network. Composite variables (Grace, 2006), 
such as the variable “Chemicals” in Figure 1b, also enable the combined impact of multiple observed 
variables to be aggregated and simplified. Both latent and composite variables enable the user to focus 
on more general processes and concepts that frequently become ‘lost’ in complex networks of observed 
variables. 
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Complexity and simplicity are also relevant elements of the approach taken to the overall modelling 
framework. In our work we chose to develop two sub-models independently (the chemical and the 
fluvial habitat models), and only later to combine them in a unified model. This allowed us to interpret 
the outcomes of analyses of the individual models, as well as to recognise and explain changes to the 
individual models when they were combined. Two examples serve to illustrate these points: 

• In Figure 1c, a direct link exists between the variables “Cobble” and “ASPT”. This link was added 
to improve model fitting, and represents a covariance between the presence of cobbles and ASPT. 
One possible explanation for this link is that the variable Cobble is acting as a proxy for other 
aspects of the system that affect ASPT, in particular chemical conditions. However, the path 
coefficient is negative, suggesting that higher presence of cobbles is associated with lower ASPT. 
This would seem counter-intuitive – greater presence of cobbles would be expected in upstream 
reaches where chemical pollution is generally less severe than in lowland reaches, and this would 
be expected to result in a higher value of ASPT. However, in the unified model the direct link 
between Cobbles and ASPT is no longer present, and is replaced by a negative covariance between 
“Substrate” and Orth avg and BOD90.   

• The fluvial habitat model included the influence of the composite variable “Morphological 
features”. However, within the unified model the influence of this composite variable was found to 
be insignificant, and the network could be simplified through the removal of “Morphological 
features” without decreasing the fit of the model to the observed ASPT and LIFE data. Such 
simplification of the model network would have been a far more complicated task if all possible 
variables had been introduced within a single network from the outset, primarily because of the 
high degree of covariance between many of the variables.  

5. THE POTENTIAL OF A BAYESIAN APPROACH 

Adopting a Bayesian approach to solving SEM can bring a number of benefits. Bayesian approaches 
are particularly well suited to the challenges of incomplete datasets and non-normal data distributions.  
Non-normality was a particularly relevant challenge for data obtained from the RHS which are often 
based on simple occurrence of specific features within a river. The Bayesian approach also allows the 
incorporation of prior knowledge regarding the probability distribution of values for individual 
variables within the network. This could be of particular benefit for future applications where prior 
distributions may be known or extrapolated from previous studies and/or data collection. In contrast to 
many other multivariate approaches, this offers the opportunity to explicitly incorporate existing 
knowledge within a statistical analysis of fluvial ecosystems, and is consistent with the confirmatory 
rather than purely explanatory nature of SEM.  

The Bayesian approach 
also allows uncertainty in 
the parameters of the 
model to be represented, 
and the impact of this 
uncertainty to be 
evaluated. It is possible to 
treat stochastically the 
metrics of latent variables 
and to produce intuitively 
a representation of 
uncertainty in the 
parameters. It is also 
possible to examine the 
reciprocal influences of 
parameter uncertainty 
within the model network. 

Figure 2a shows the marginal posterior distributions for the standardised direct effects of the variables 
“Substrate” and “Chemicals” on the variable “Effective oxygen”, and Figure 2b the marginal posterior 
distributions for the standardised direct effects of the variables “Substrate” and “HMScore” on the 
variable “benthic macroinvertebrates”. Figure 2b shows a symmetrical distribution of probabilities 
centred on the means of the two parameters, whereas Figure 2a shows a far less symmetrical 
distribution. The statistical interpretation is that if we assume a change in the value on one axis of 
either Figure 2a or 2b, the probability that the value on the second axis will also change is higher in 

 
                          (a)                                                       (b) 

Figure 2.  The marginal posterior distributions for the standardised 
direct effects of: a) the variables “Substrate” and “Chemicals” on the 

variable “Effective oxygen”, and b) the variables “Substrate” and 
“HMScore” on the variable “benthic macroinvertebrates”. 
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Figure 2a than in 2b. The process-based interpretation is that the variables Substrate and HMScore in 
Figure 2b each describe independent impacts upon the variable benthic macroinvertebrates. In contrast, 
Figure 2a suggests that the predictors Substrate and Chemicals are more strongly related, and that a 
change in our knowledge of one parameter is likely to result in a change to the other parameter. This is 
valuable and relevant information to take into account when we try to assess the relative importance of 
individual drivers on fluvial ecosystems, both from a scientific perspective in terms of our 
understanding of the system, and a management perspective, for example when trying to manage trade-
offs between possible consequences of policy when they are deeply affected by uncertainty.    

6. CONCLUSIONS 

We have briefly presented the results of a SEM-based analysis of the relationships between biological, 
chemical and geomorphological components of fluvial ecosystems, drawing on data collected from 
several hundred sites in rivers across England and Wales. Different models based on current conceptual 
and theoretical understanding of fluvial ecosystems were developed and tested within the SEM 
framework. Although separate chemical and fluvial habitat models provided satisfactory fits to 
observed data, the most powerful model was developed through the combination of chemical and 
fluvial habitat variables within a unified model network. The SEM framework provides a range of 
attractive features for modelling complex systems such as rivers, including the potential of latent and 
composite variables for aggregating and simplifying networks towards more intuitive conceptual or 
theoretical versions, and the power of using Bayesian approaches to solve SEM. We believe there are 
significant opportunities for future application of SEM to the challenges of understanding complex 
process interactions within fluvial ecosystems. We believe the SEM framework could offer a vehicle 
for improved collaboration between scientists and stakeholders in the future, for example through the 
inclusion of knowledge from both groups in the development of a-priori conceptual models, and the 
subsequent testing of these models against available data.     
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