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Abstract: One of the main questions, describing the behavior of a pollutant in the atmosphere, is 
determining its concentration in some point within a study area, where we come across areas that are difficult 
to access and where it is impossible to carry out measuring campaigns, or where it is not known with 
certainty how and in which form the discharge of a pollutant from a source occurs. This without counting, 
that there is little information, that a group of m_monitoring stations, which monitor the quality of the air, 
provides about the spatial behavior of the phenomenon. To overcome these problems in an integral way, this 
article proposes and analyzes a computational model, based on the principles of evolutionary computation 
(EC), in order to determine the behavior in terms of space and time of the concentration of the particulate 
matter PM10 within a defined area. The model consists of a solution structure or individual with two 
submodels or genetic substructures that in turn determines two evolutionary submodels that evolve in an 
asynchronous manner: an estimate submodel which permits to know the emissions in n_sources based on the 
principles of a BGPT model (Backward Gaussian puff Tracking) from m_monitoring stations in an inverse 
way, and a spatial interpolation submodel of the type Takagi Sugeno NUPFS (Non Uniform puffs Functions) 
in order to determine the spatiotemporal behavior in terms of the analytic representation that defines each one 
of the puffs emitted from each one of the considered n_sources. In accordance with this structure, the 
asynchronous evolution mechanism is given mainly by the dependence that the interpolation submodel 
presents with respect to the estimate submodel, as this fixes and defines the base functions or NUPFS that 
serve as a base for the interpolator. The proposed evolutionary model was validated using for the estimate a 
series of concentration measurements for PM10, which were taken starting from a group of m_monitoring 
stations, which monitor the quality of the air, and starting from a series of n_selected spatial sources within 
the study area. For the case of the spatial validation, a series of analytic surfaces of concentration for PM10 
were obtained from the interpolation model. Each of these surfaces was duly validated by using the 
CALMET/CALPUFF model and it was validated for each measurement campaign. In this way, the proposed 
evolutionary model allowed to determine the spatial behavior of the concentration for PM10 in a dynamic way 
over time, mainly due to the construction which the estimate model uses of the NUPFS base functions 
applied by the interpolator with reference to the phenomenon. 

Keywords: BGPT (Backward Gaussian puff Tracking), Evolutionary Computation (EC), Lagrangian puff 
Model (LGP), Environmental Modeling, Takagi Sugeno (TKS), macropuffs (Non Uniform puff Functions - 
NPFS) 
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1. INTRODUCTION 

One of the main concerns when it comes to mitigating the effects of concentration for PM10 particulate 
material in a study area is to determine their spatial distribution over time. In order to determine this 
behavior, a series of mathematical and physical constraints are presented, which from a physical point of 
view, are determined by the quantity of available monitoring stations for air quality, or by the inability to 
carry out massive measurements, that allow to identify the behavior of the contaminant over time, especially 
in areas where access is difficult. From a mathematical point of view, these constraints extend from a 
spatiotemporal representation of the concentration through the estimation of the emission source, the type of 
pollutant, and how and in which form a discharge of PM10 can affect a particular point in the area (Aceña et 
al., 2007), (Martin et al., 2007). To solve this problem, geostatistics and computational intelligence have 
developed a variety of methods of representation and interpolation, which in many cases do not adjust to the 
modeling of a specific phenomenon, mainly due to the size and quality of the initial sample of points that 
represent a phenomenon in a study area (Cruzado, 2004), which in the case of atmospheric phenomena, may 
cause that the set of points of concentration for PM10 suffer dynamic changes over time. That is why 
methods are required that conduct search, adaptation or have memory, so that they can generate a number of 
surfaces over time in terms of the phenomenon that enable decision-making with regard to the mitigation of 
the impact of this pollutant . 

Having said this, different models for solving the problem of estimating emissions at the source have been 
developed, among them, the models proposed by (Lundquist et al., 2005) stand apart, who makes a 
reconstruction of the emission starting from the design of monitoring networks using the UDM model and 
two models proposed by Allen (Allen et al. 2007 (a)), one for optimizing variables, using genetic algorithms 
based on the model SCIPUFF, and a second model (Allen et al. 2007 (b)) based on genetic algorithms and a 
Gaussian plume model to estimate the position, the emissions and the source size plus the wind field, all this 
from a set of concentration values obtained from a set of theoretical monitoring stations uniformly distributed 
in a study area. Also the work of (Kyats et al., 2007) stands out, which uses a Bayesian inference model for 
the reconstruction of emissions from a set of monitoring stations. Similarly (Monache et al., 2007) proposed 
a model of Bayesian inference, but in this case to rebuild emissions on a continental scale. However, one can 
observe a significant absence of spatial models, that would allow us to determine the concentration of a 
pollutant in a study area analytically, incorporating elements specific to the physical phenomenon of 
dispersion, mathematical elements that are specific to the representation and spatial interpolation and 
computational elements that are specific to learning, adaptation or memory (CISTI-Symposium-2009). 

In this article a computational model which is based on the principles of the Evolutionary Computation (EC) 
will be developed and analyzed in order to determine the spatiotemporal behavior of the concentration of the 
particulate matter PM10 within a research area. The integrated model consists of two sub-models that defines 
two genetic substructures of the solution, a first genetic substructure which permits to estimate the emissions 
in n-sources starting from m-monitoring stations that measure the quality of the air, accordingly to a LPG 
model (Martin et al., 2007) and based on the principles of a model BGPT (Israelsson et al. 2006). In this first 
stage the construction of a series of macropuffs functions or NUPFS functions (Non Uniform Rational Basis 
Functions) is carried out with respect to concentration of puffs in space. A second genetic substructure, 
establishes a fuzzy model of the spatial interpolation TSKN (Takagi Sugeno NUPFS) (Hernandez and Pena, 
2007b), (Hernandez and Pena, 2005), (Sanchez et al., 2005) which permits to determine analytically the 
spatial behavior of the concentration in terms of the phenomenon (EvoStar2009).  

In order to develop this model, there are a number of mathematical concepts that allow the estimation of 
emissions at the source in terms of a model BGPT (Israelsson et al. 2006), (Aceña et al., 2007), as well as 
concepts that define a fuzzy model for an adaptive interpolation (Peña and Hernández, 2007b). Subsequently, 
the solution structure or individual will be defined in accordance with each of the sub-models which in turn 
define two genetic substructures in the individual. The transformation of the solutions over time, which lasts 
a measurement campaign, will progress through an asynchronous evolution, mainly due to the dependency 
which the genetic substructure of interpolation demonstrates and due to the genetic estimation substructure, 
which permits the construction of the base functions of the interpolator or NUPFS. Finally, the proposed 
evolutionary model will be validated in two stages determined by each substructure using the model 
CALMET/ CALPUFF against a series of measurement campaigns carried out in a study area (EvoStar2009). 
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2. DEFINITION OF THE MODEL 

The proposed evolutionary model will be determined by a solution structure or individual, which will have 
two integrated models or genetic substructures, a substructure for the estimation of emissions in each of the 
considered n-sources, and by the construction of a series of macropuffs or NUPFS functions, which allow to 
determine the concentration of puffs in the study area with reference to the phenomenon. A second 
substructure will be determined by a fuzzy TKSN model of spatial interpolation in terms of each of the base 
functions obtained during the estimation process. The transformation of the solutions will be given through 
an asynchronous evolution algorithm, due to the dependency of the interpolation representation submodel, 
presented with respect to the estimation submodel.   

2.1. Genetic substructure of Estimated Emissions: 

The general problem of estimating emissions is defined in equation (1) (Martín et al., 2007): 

( ) ( ) ( ), , . . . .
1 1

, , , * , , , * ,
np nf

j j j i o i k o i k j j o i k j
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Where,  

( ), , ,c j j jC x y z k : Concentration measured in the monitoring station j, in the instant k [gr/m3].  

iQ : Quantity of pollutant contained in each of the emitted puffs [gr] 

nf:  Number of sources. i=1,2,3,………nf 
ne: Number of monitoring stations;   j=1,2,3,……..ne 
np: Number of puffs emitted by each of the i-sources. k=1,2,3,…..,np 

, ,j j jx y z : Location of each monitoring station within the research area indicated by the coordinates 

UTM_x, UTM_y, MSL (meters sea level) [m]. 

( ), , . ., , ,o i k o i k j jx y x yφ : Size and location of the puffs in each instant k of time. 

( ). . ,o i k jG z z : Reflections one puff with the earth surface and the inversion thermal layer 

The genetic substructure for the estimation is given as follows: 

Q1 Q2 Q3 ………….. Qn K11 K12 K13 ……………. K1n K2n K3n BDL 

Where  

BDL: Height of the layer for the initial mix in the research area [m]. 

K1i: Factor that depends on the information about the size of the source i [m2]. 

K2i : Multiplier which depends on the information available about the flow volume of the emitted gases  for 
source i  [m2/s] 

K3i : Multiplier which depends on the quantity of pollutant emitted [gr/m3] by source i.  
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Where 

( ). . . , , ,, ,Bj o i k o i k o i kC x y z : Initial concentration at the monitoring station j, in the instant of k [gr/m3]. 

( ), ,cj j j jC x y z : Calculated Concentration (Submodel Estimation)-  Monitoring Station j [gr/m3]. 

FA: Fitness Function.  
Ke: Constant of proportionality. 

2.2. Interpolation Representation Model - Takagi Sugeno NUPFS Model. 

According to the estimation substructure, the construction of a series of macropuffs or NUPFS that indicate 
the concentration of puffs in a specific area within the study area, is carried out. Each of the macropuffs is 
analytically defined as follows: 

2201



Peña et al., Asynchronous Evolutionary Inverse Modelling for PM10 Spatial Characterization 

( )
( )

22

, , , ,
, , 3 / 2

1 1
, , ,

22

i x j i x i y j i y
i x i y j j

x yx y

c x k c y k
c c x y Exp

σ σπ σ σ

   − + − +   Φ = − +            

               (3) 

Where: 

i: Indicates the number of macropuffs determined by the interpolation representation model i=1,2,3,….,m. 

,ix iyC C :  Spatial location of each macropuff or NUPF(UTM_x, UTM_y) . 

,j jx y : Regular partition of the space in the study area, which will be evaluated against each NUPFS (m). 

,ix iyk k : Deformation of macropuffs by eccentricity (m).  

In this way, in order to determine the spatial temporal behavior of the concentration for PM10, the Takagi 
Sugeno fuzzy model, each NUPFS or macropuff is separated in each axis as follows: 

[ ]xmxxx ,,2,1 ,......,, φφφφ =       [ ]ymyyy ,,2,1 ,......,, φφφφ =                  (4) 

Where: 

,i xφ : Indicates the decomposition of each i_macropuff on  the axis UMT_x. 

,i yφ : Indicates the decomposition of each i_macropuff on the axis UMT_y. 

In this way, in order to determine the analytical behavior of the spatial concentration of PM10, the equation 
will be given as follows: 
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According to the equations mentioned above, the output value of the interpolator will be given: 
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The genetic substructure of estimation is given as follows: 

C1x C2x ……… Cnx C1y C2y ………. σ 1x σ 2x ……… σ nx σ 1y σ 2y ………. σ ny 

Where  

Cix, Ciy: Location of each macropuff in the study area with coordinates UTM_x, UTM_y. 
,ix iyσ σ : Base size of each macropuff considered by the interpolator.  

Kix,Kiy: Parameters that indicate deformation due to eccentricity for each macropuff. 
i=1,2,…,nx:  Spatial resolution representation of the concentration on UTM_x. 
j=i, 2,….,ny: Spatial resolution representation of the concentration on UTM_y. 
 
In accordance with the DEM provided by the evolutionary model, and in accordance with the DEM of 
concentration delivered by the CALPUFF model, the fitness function is (11): 
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Where  
FA: Inverse RMSE (Root Mean Square Error) of each point that constitutes the DEM. 
PM10d: DEM of concentration or DEM reference – CALPUFF model. 
PM10: DEM calculated by the proposed evolutionary model.  

2.5  Asynchronous Mechanism of Evolution 

The proposed evolutionary model consists of two sub-models, that are interrelated through a series of DEM's 
for PM10, emitted in each instant of time of the sampling by the estimate model. Each DEM of concentration 
is renewed by the interpolation sub-model, which in turn begins a process of evolution which will deliver the 
spatiotemporal behavior of the concentration for PM10 as a result. The evolution of these two sub-models 
will generate a dependency with regard to the evolution, because the initial concentration values produce the 
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patterns of transformation of the analytic surface, which the DEM of concentration represents for PM10. The 
evolution process is described in the following way (Coello, 2006):   

1. Initialization: The initial population of individuals is generated for the estimate models and for the 
representational and spatial interpolation. For the proposed first part of the individual the evaluation 
of the fitness function is carried out. The initial population is generated only once, right at the 
beginning. 

2. Estimate Stage: In this stage the operator of Stochastic Universal Selection is used with the purpose 
to keep alive the genetic diversity of the population, the operator of Crossing for an arithmetic total 
with the purpose to carry out a more gradual crossing of the genes, and an operator of Mutation 
which will make the fine adjustment of the genes of an individual possible. The estimate stage 
delivers a DEM of concentration for PM10 as a result, for each instant in time of the sampling of air 
quality.  

3. Stage of Representation Interpolation: In this stage three evolution operators are used – similar to 
those of the previous stage - although the mutation operator has to maintain a topology structure, 
which depends on the location of each of the considered macropuffs. This indicates that the Operator 
of Mutation will make it possible that the puffs move in a gradual way within the space (Peña and 
Hernández, 2005), (Peña and Hernández, 2007(a)), (Peña and Hernández, 2007(b)). 

3. ANALYSIS OF THE ASYNCHRONOUS EVOLUTIONARY MODEL. 

In order to analyze the behavior of the concentration in terms of space and time for PM10, a series of 
measurement campaigns were carried out in different study areas, comprising an area of 25* 25 km2  with a 
resolution of 0.5 km for the grid, for different spatial configurations of n-sources and m-stations that monitor 
the quality of the air. Each campaign lasts 48 hours, while the dynamics of the LGP model are given by a 
series of wind fields calculated at a height of 10 m. For this analysis, we proceeded estimating emissions for  
every hour and in each of the sources using the metrics for the concentration of PM10 taken from each of the 
m-stations as a pattern of learning and adaptation. As a result of the asynchronous evolution a number of 
analytical surfaces for the concentration of PM10 with respect to the concentration of puffs or NUPFS within 
the study area were obtained. Based on the estimated emissions, the measurement campaigns that were 
mentioned before, were carried out using the model CALMET / CALPUFF, which resulted in a series of 
hourly DEM’s (Digital Elevation Model) of concentration for PM10, which was evaluated with respect to the 
analytical surface obtained from the evolution. 

For the analysis eight statistic metrics were used according to the fuzzy model proposed by Ok-Hyum (Park 
and Seok, 2007): Fractional Bias (FB), Normalized Mean Square Error (NMSE), Geometric Mean (MG), 
Geometric Variance (VG), Index of Agreement (IOA), Unpaired Accuracy of Peak (UAPC2), Within a 
Factor of Two (FAC2), Mean Relative Error (MRE), where each of the metrics assumes a qualitative fuzzy 
value of Good (G), Fair (F), OverFair (OF), UnderFair (UF) and Poor (P). With respect to the performance 
indicator of the model, quantitative values are assigned to each quality in the following way: G (8.5), F(5.5), 
OF (6.0), UF (5.0) and P(2.5). According to this, the results which were obtained in order to determine the 
behavior for PM10 concentrations in terms of space and time are as follows: 

Table 1. Interpolation Analysis Interpolation and Representation Model - Spatial behavior over time for 
PM10 (20 macropuffs), 0.5 km resolution of the grid. 

Days n_Sources m_Stations FB NMSE MG VG FAC2 IOA UAPC2 MRE Score Grade

03-05 4 20 0.44319 0.48772 1.26427 1.03386 0.8725 0.82499 0.01162 0.13422 68 A 

08-10 4 6 0.4763 1.04459 1.13548 1.12435 0.9425 0.65279 -0.43389 0.04745 68 A 

08-10 4 10 0.4763 1.04459 1.13548 1.10488 0.9425 0.65279 -0.434 0.04745 68 A 

08-10 4 15 0.28956 1.02242 1.10437 1 0.945 0.6316 -0.09792 0.02986 68 A 

08-10 4 20 0.22943 0.61457 1.10225 1 0.9475 0.74391 0.1015 0.04245 68 A 

32-33 4 4 0.45975 0.97824 1.26312 2.40296 0.8675 0.65331 -0.15473 0.07567 68 A 

60-62 4 4 0.56669 0.96783 1.32869 2.86428 0.8575 0.68926 -0.12711 0.12158 63.92 A 

91-92 4 4 0.30769 0.67503 1.11597 1.12435 0.9225 0.73782 -0.31272 0.04541 68 A 

121-122 4 4 0.40397 0.66605 1.17398 1.17398 0.9 0.76205 -0.2365 0.08598 68 A 

152-153 4 4 0.54585 0.91876 1.28117 1.83936 0.86 0.73979 0.1605 0.12874 68 A 

169-170 4 4 0.26164 0.51027 1.06283 1.06458 0.9525 0.87339 0.371 0.03636 68 A 
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200-201 4 10 0.40367 0.65264 1.14673 1.14767 0.93 0.77427 0.15712 0.06338 68 A 

215-216 5 5 0.35517 0.48774 1.12555 1.21708 0.9275 0.83883 0.2 0.06085 68 A 

215-217 5 10 0.48474 0.80462 1.22977 1.91243 0.865 0.77214 0.21282 0.11617 68 A 

215-217 5 15 0.47965 0.77726 1.25506 1.84594 0.865 0.75884 0.28742 0.12469 68 A 

215-216 5 20 0.39944 0.74279 1.13849 1.14958 0.935 0.73471 0.02807 0.05042 68 A 

215-216 5 25 0.49625 0.94807 1.26543 2.075 0.86 0.68471 -0.02641 0.1032 68 A 

281-282 4 4 0.47754 0.74424 1.25916 5.02138 0.87 0.72551 -0.1536 0.07433 65.45 A 

299-300 4 5 0.47634 0.60145 1.28413 1.06091 0.8725 0.86194 0.30155 0.17091 68 A 

299-300 4 10 0.02536 0.05539 1.0158 1.0158 0.99 0.84829 0.16517 0.00858 68 A 

299-300 4 15 0.37195 0.60577 1.11842 1.32463 0.9375 0.81073 0.25418 0.05026 68 A 

299-300 4 20 0.29817 0.78764 1.15497 1.17662 0.9025 0.68184 0.335 0.04 68 A 

335-336 4 4 0.02854 0.05869 0.97228 1.1263 0.79541 0.8547 0.19023 0.00785 68 A 

   0.380747 0.70419 1.17101 1.55678 0.9026 0.75253 0.03475 0.07242 67.71 A 

   G G G G G G G G   

 

According to Table 1, we can observe that the average obtained for 
(FB) settled down at 38,075%, achieving qualifications of (G) and 
(UF), with predominance for (G) according to the fuzzy model 
proposed by Ok-Hyum (Park and Seok, 2007). This FB tells us that 
the model had a tendency to underestimate the concentration 
values, mainly due to the spatial location of macropuffs used by the 
interpolation evolutionary fuzzy model. It should be noted that due 
to the shapes that the rational base functions or NUPFS took and 
that were used for the interpolation, the model tended to round the 
peaks that constitute each DEM, as shown in Figure No. 1.  

From Table 1 we can observe that the MRE was close to 0.07242, 
which indicates that the interpolated surfaces had a slight 
underestimation of the concentration interpolated values, which 
confirms the concept of rounding which predominates in the 
interpolation. According to the FAC2 and UAPC2, that took 
average values of 0.9026 and 0.03475 respectively, it turns out that 
the maximum concentration values obtained by each of the models 
only differ in a 3.3475%, while over 90% of the points obtained 
from the interpolation were within the interval which defines the 
FAC2. If you look at the metrics MG and VG, values were 1.17931 
and 1.56374 respectively; this reveals that this model can be 
considered as good, since these values will be within a range of 
95% which defines an interval of trust between 0.5 and 2.0 - 
similar to FAC2. In the light of the score obtained using the fuzzy 
model of Ok-Hyum, we can see that the performance index was 
close to 68 points which ranks the performance of the model in 
category A (Park and Seok, 2007). We can also observe that the 
IOA achieved values close to 75%, although this value decreases 
with the number of sources. This value of IOA, was fostered by the 
dynamics of the interpolation model, which does not depend on the 
quality and quantity of points that represent a phenomenon in the 
study area. 

4. CONCLUSIONS. 

The proposed evolutionary model overcame the limitations 
imposed by the limited spatial information which a set of m-
stations that monitor the quality of the air provide about the spatial 
behavior of the phenomenon of dispersion for particulate material 
in a study area. However, over time these limitations imposed a series of patterns of change with respect to 
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the form and the evolution of the surface of the concentrations that were obtained as a result of the 
interpolation representation process. 

Unlike the models used in geostatistics and computational intelligence for representing such phenomena, 
which build their potential on the quantity and quality of the points obtained from the phenomenon, the 
proposed model was able to develop an interpolation by learning and adaptation, starting from the 
identification of a set of base functions, which indicate the concentration of puffs or pollutants in a study area. 
In this way, the evolutionary model uses its own elements of the dynamics of the phenomenon, which 
improves its performance compared to other methods used for the representation of such phenomena.  

The proposed evolutionary model allowed to represent the spatial behavior of the concentration for PM10 
over time in a more comprehensive manner, mainly due to the existent dependency between the genetic 
substructures of estimation and the interpolation, which joined with an initial population, generated only once 
at the beginning of the process of the evolution, implicates that the model only requires minor adjustments 
during the estimation of emissions and in the forming of the base functions with respects to the metrics of the 
concentrations, that is also reflected in a gradual change of surfaces that represent the spatial behavior for 
PM10 concentrations over time in a study area.  

The model of interpolating NUPFS allows the reduction of the phenomenon of spatial dispersion, in terms of 
the solution structure or individual, making the spatial representation of the concentration in accordance with 
the TKS interpolation model easier. Similarly, the spatial mapping of genes that establishes the solution 
structure or individual on top of the surfaces of the concentration will permit to generate a roadmap with 
reference to of the genetic behavior presented by the individual during the period of a measurement 
campaign.  
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