
18th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009 
http://mssanz.org.au/modsim09 

Using game engine technology to create real-time 
interactive environments to assist in planning and visual 

assessment for infrastructure 

Philip Greenwood1, Jesse Sago1, Sam Richmond1, Vivi Chau1 

1ASPECT Studios - Digital Studio, Melbourne, Australia 
Email: philg@aspect.net.au 

Abstract: In the field of landscape and infrastructure project planning, real-time 3D environments provide 
a useful complement to traditional methods of site assessment such as aerial photography, plans and maps. A 
virtual model gives the user an insight into the intricacies of the site and how site features relate to each 
other. In particular, use of a real-time 3D model of the landscape prior to an actual site visit enables a much 
more efficient assessment while in the field. 

Recent years have seen the release of a range of game development platforms that greatly facilitate the 
development of real-time 3D models. These game development platforms or game engines offer great 
extensions over earlier technologies such as Virtual Reality Mark-up Language (VRML).  

Game engines provide a suite of visual development tools in addition to reusable software components. 
These tools are an integrated development environment to enable simplified, rapid development of interactive 
models and environments. They primarily provide powerful render engines that allow the visualisation of 
complex, highly detailed landscapes in 3D in real-time. They also typically provide a scripting interface, 
physics engine, sound, animation, artificial intelligence, and networking, which enable the development of 
sophisticated interactivity. Some popular commercial game engines include the Torque engine, Quest3d, 
Unity3d and Virtools.  

We present a new software application (‘ASPECT Studios 3D Viewer’) which was built using the Virtools 
game development platform for the purpose of visualising digital terrain models and typically also 
incorporating buildings and vegetation. The application is designed for visualising areas up to approximately 
to 100 km2. As well as a navigation system, the application also provides tools for the user to analyse the 
model in various ways as well as modify and maintain the model. Thus the 3D Viewer itself is best thought 
of as a set of interactivity tools independent of the model, or content. 

The application was produced within an established landscape architecture studio in a response to the needs 
of industry. It particularly addresses the requirements of tenders offered by government departments. The 3D 
Viewer is used by landscape architects and urban planners to help resolve planning issues, in particular visual 
assessment issues. It has found widest applications for models of urban areas, although it has been used for 
rural areas.  

 

Keywords: Game Engines, Virtual Reality, Landscape Visualisation, Urban Planning 

2229



Greenwood et al., Using game engine technology to create real-time interactive environments to assist in 
planning and visual assessment for infrastructure 

1. INTRODUCTION 

We aimed to develop a software application for use by landscape architects and urban planners to help 
resolve planning issues through interactive visualisation and analysis of digital terrain models with 
incorporation of buildings and vegetation.  

In previous years simple real-time environments were produced by us and others primarily using VRML. 
While VRML advanced the field of visualization of 3D objects, it is only capable of quite static models and 
minimal interactivity and so its application for landscape planning and development is limited. In addition it 
is quite difficult to abstract interaction features into reusable components, making it onerous to construct full 
featured models after the assets had been created, even if the features are very similar between models. 
Therefore models developed in VRML are usually written as singular entities. 

Another limitation of VRML is that the format does not support the real-time rendering of either shadows or 
reflections. Navigation through the models is typically limited by that of the VRML browser, and there is no 
provision for multi user environments.  

Google Earth is another technology that offers special benefits and is well suited for viewing landscape 
models over a very wide area. Google earth’s spherical coordinate system is of clear benefit for visualisation 
of large areas. However its main drawback is that the terrain models are not highly accurate. Also, while the 
aerial photography is of high quality in many areas, some areas do not have high resolution images. Game 
engines allow easier development of sophisticated and customised interactivity with the landscape, and 
enable the user to have full control over the terrain model. 

To select the gaming engine for use, we assessed some popular commercial game engines including the 
Torque engine, Quest3d, Unity3d and Virtools. Our selection criteria were: affordability; the capacity to 
import information in real-time, built features such as shadowing, the right balance between flexibility and 
ease of use, and suitable for rapid development of custom features by a small development team. We 
excluded Unity3d because at the time it was limited to Macintosh computers; we chose Virtools over other 
options because we already had some access to it and it was comparable on other selection criteria. 

The Virtools game development platform has a major strength in development environment. It has a large 
number of preassembled software components that allow the programmer to quickly and efficiently operate 
at a very high level. This enables model development to proceed much more rapidly than in traditional 
programming environments. 

Virtools scripting can be performed with 
either a traditional type of object oriented 
language, or through a visual scripting 
interface (Figure 1). Typically the 
programmer uses a combination of these 
approaches. We have found the latter 
increases the speed and transparency of 
software development. New software 
components can also be added to either the 
scripting language or the visual scripting 
interface using the C++ programming 
language. 

We combine Virtools with a Windows 
application to produce a highly interactive 
software application for the interactive 
visualisation and analysis of real-time 
environments of landscape. 

The rationale behind this project was needs-driven in the context of the commercial setting of a landscape 
architecture and urban planning company with a dedicated 3D visualisation studio.  Existing clients (mainly 
local government urban planners and GIS specialists) specifically requested a software package that allowed 
them to navigate through a city model freely and enable them to make better use of their data for the purpose 
of decision making and communication. Specific features requested included shadowing, distance 
measurements, importing of new scenarios (such as new buildings), visualisation of future building 
envelopes for planners, GIS data visualisation overlaid on their city models and viewshed analysis. To be 

Figure 1. An illustration of Virtools visual scripting. 

2230



Greenwood et al., Using game engine technology to create real-time interactive environments to assist in 
planning and visual assessment for infrastructure 

competitive, the software needed to be user-friendly, simple, affordable and built quickly. We responded to 
these requests by synthesising our existing services into a new software package.  

Our rationale is somewhat different to that within a purely academic setting. We recognise that we are not the 
only group to successfully use game engines for visualisation of landscape. For example, (Stock et al 2008) 
have developed a suite of tools SEIVE viewer, which features GIS data interoperability, which has found 
applications particularly in rural landscape visualisation. ASPECT Studios 3D Viewer was developed in a 
commercial context and as such our project was developed in parallel with developments elsewhere in the 
field, but we do not claim that our development has necessarily built directly on published works. 

2. METHODS 

A model of a typical production pipeline for our real-time model development is shown in Figure 2. We 
produced a Windows software application written in the C# language to encapsulate the software component 
provided with the Virtools game engine for displaying the model. The Windows application also contained 
most of the user interface.  

The user interface elements such as menus, buttons, and dialogues, were implemented in a Windows 
application so that existing standard technologies could be exploited, rather than using the game engine itself 
to reinvent these things. However it was appropriate to implement some user interfaces within the game 
engine, such as the Navigation Control, Notification Area, and Coordinate Display (Figure 3).  

The content of the models can be generated in a variety of ways. The 3D assets of the models can be 
extracted from LIDAR surveys, photogrammetry, or manually constructed in a 3D modelling package from 
other data (such as GIS data). In every project the type and amount of data available is different and a full 
discussion of the model content generation is beyond the scope of this paper. Once the content of the model 
is generated, the content is divided into the categories of terrain, buildings and vegetation. 

The terrain model holds a special place over other 3D objects in the model. In effect the terrain becomes the 
fundamental part of the space itself. Even though the terrain is embedded in three dimensional space, we 
need only two parameters to indentify a point in the terrain because the terrain is topologically equivalent to a 
plane. This is important because it provides a way to convert two dimensional maps to three dimensional 
ones, by assuming that position of an object in the map is on the ground, which is true in almost every 
practical situation (thanks to gravity). Converting two dimensional maps to three dimensions in this way is 
particularly important for GIS visualisation. For this reason the terrain is fixed for each model and cannot be 
altered by the user. 

Data Collection Game Engine

Photogrammetry

raw 3D

LIDAR survey
textured 
model

interactive 
model C#

            
raw 3D and 
raster data

Virtools Development 
Environment Virtools Player

GIS data

Other

CAD

Maya, 3dsMax, 
Sketchup, etc.

Modelling                     Software Application

Figure 2. Simplified model of a typical production pipeline for our real-time model development. 

2231



Greenwood et al., Using game engine technology to create real-time interactive environments to assist in 
planning and visual assessment for infrastructure 

3. FEATURES OF THE 3D VIEWER  

The user interface is shown in Figure 3, and described in detail below.  

1. Navigation Control – Move around in the model i.e., left / right / up / down 
2. Walk, Fly and Plan views – Change the viewing mode from walk to fly to plan view 
3. Extra Controls – Switch to separate Navigation controls 
4. Notification Area – Messages and information regarding current tool in use 
5. Coordinates – The current position and height in projected GIS coordinates 
6. Menu – Features can be operated from the menu as well as toolbars  
7. Standard Tools – New file, Open file and Save 
8. Import Tools – Import .3DS 3D objects and vegetation data 
9. Layer Tool – Organise imported objects onto layers that can be shown, hidden and saved 
10. Edit Object Tools - Move/scale/rotate/copy/delete imported 3D objects 
11. Facade Edit tool – Edit specified building’s textured facades  
12. Saved Views – Save camera positions and create fly-throughs 
13. Shadow Tool – Analyse shadows in the model 
14. Measure Tool – Make measurements in the model 
15. Viewshed Tool - Analyse line of sight in the model 
16. Capture Tool – Save screenshots and videos 

3.1. Navigation Control  

The most important interactivity feature in any real-time 3D environment is the navigation feature. Whilst at 
first it may seem like a trivial problem, the tool must allow the user to travel through three dimensional space 
at different scales and speeds, simulate different modes of interaction, and incorporate it into a unified user 
interface that is easy and intuitive to use and extremely robust. More effort went into development of this tool 
than any other. Indeed the users overall experience of the environment is determined by how the navigation 
control works.  

There are three modes of interaction; flying, walking and plan view. Each view is a perspective projection 
with a default focal length of 35mm (user is also able to choose focal length). The canonical view mode is the 
flying view and the walking and plan views are referenced from the flying view. The walking view is the 
position on the surface of the terrain directly below the flying view, and the plan view is a fixed orientation 
from a chosen height above the flying view.  

In each view user clicks and drags in the navigation icon to move (Figure 4). Movement speed is proportional 
to the cube of the distance dragged vertically. This allows fine control at low speed yet gives the user the 

 

Figure 3. Legend of the 3D Viewer Screen. 

2232



Greenwood et al., Using game engine technology to create real-time interactive environments to assist in 
planning and visual assessment for infrastructure 

ability to move around quickly if desired.  Similarly, rotation about the vertical axis is performed by clicking 
and dragging horizontally and again the speed of rotation is proportion to the cube of distance dragged. 
Furthermore there is alternate movement style that where movement and orientation can be controlled 
separately (Figure 5). 

3.2. Saved views 

The user can save a list of camera locations and create a list of animated camera paths or `fly-throughs’ with 
the same tool. Animated camera paths are created by selecting a series of `keyframes’, that is, camera 
positions and orientations. The animation proceeds by moving the camera to each keyframe in sequence, and 
then interpolating positions and orientations between the keyframes as it goes. A saved camera location is 
just a degenerate animation, that is, an animation with just a single keyframe. 

3.3. Shadows 

Shadows are an important consideration for visual 
impact assessment. We used an established 
algorithm to compute the solar vector for any point 
on earth (Blanco-Muriel, 2001). The algorithm 
takes time, date, latitude and longitude to compute 
accurate azimuth and elevation angles. Latitude 
and longitude are fixed to the centre of the location 
of the model and then the user interface allows 
specific times and date to be entered and controls 
for animating the sun either through an entire 
specified day, or an entire specified year (Figure 
6).  

3.4. Measurement  

Measurement of distance, slope and area are important tools for analysis. Measurement of distance and slope 
is performed by selecting a pair of points in the model with the mouse and calculating the distance and 
gradient in 3 dimensional space. Measurement can also be constrained to the vertical axis, for measurements 
of height, and constrained to the horizontal plane, for measurements in plan view. Areas can also be 
measured by drawing a simple polygon (through selecting vertices with the mouse). All areas are constrained 
to the horizontal plane. 

3.5. Viewshed 

A ‘viewshed’ is the set of regions that are visible to the human eye from a particular vantage point. 
Viewsheds are particularly important for visual impact assessment in urban planning. The viewshed tool 
allows generation of the 3 dimensional viewshed from any point in the model, and also allows the vantage 

 

Figure 4. The standard movement control. 

 

Figure 5. Separated movement controls. 

 

Figure 6. Real-time shadows. 

2233



Greenwood et al., Using game engine technology to create real-time interactive environments to assist in 
planning and visual assessment for infrastructure 

point to be dynamically moved through the model 
using the mouse. The generated viewshed is 
displayed by obscuring the parts of the model that 
can not be seen from the vantage point with a pink 
colour (Figure 7).  

Importantly, since a viewshed is in reality is a 3 
dimensional volume, projections to a 2 
dimensional plane may result in some loss of 
information. For example, if the viewshed was 
performed next to an overpass, it would appear 
from a plan view projection that all views were 
obscured in the direction of the overpass, however 
only a small volume would be obscured and in 
reality there would still be views below and above 
the overpass. 

3.6. Import 

Models need to reflect changes over time and be able to visualise possible future outcomes. Therefore it is 
necessary to allow the users to import new objects. Objects can be imported in 3 ways.  

(i) A general object can be imported in Autodesk 3DS format. The object is positioned manually using the 
mouse. 

(ii) There is a library of standard objects that can be imported and placed in a similar way. The Viewer can 
be configured so that the library can contain whatever objects the user desires. For example, tree of a 
specific species or street furniture. 

(iii) Objects can be imported by copying from an internal library, and positioning and scaling the copied 
object using an ASCII text file that contains a dataset of position and scale vectors. This third option is 
particularly well suited for large numbers of similar objects such as trees and vegetation, although it 
could be used to arrange any type of object. It is important to note that when using the ASCII text file 
import feature the user need only specify two coordinates for position. The third coordinate is 
determined by the height of the terrain at that point. Thus the ASCII text file import feature serves as a 
way for the user to convert two dimensional maps to three dimensional ones. This kind of dataset can be 
maintained in a GIS and so this feature allows visualisation of some GIS data. 

3.7. Texture editing  

The model can be updated by allowing the user to change the textures, that is, raster images, on 3D objects. 
This is particularly important in urban settings which have a large amount of textures, particularly 
photographs of buildings on the 3D models representing them. On invoking the tool the user can select an 
image by clicking on it, and then automatically open the image editing package associated with that file type. 
The user can perform manipulations such as changes to the scale and orientation in the editing package, and 
then save the file. The texture is updated in the model on the fly when the update button is pressed. 

3.8. Transformation 

Objects that have been imported can be transformed in simple ways. Any imported object can be moved, 
rotated in the vertical axis, or scaled. Transformation is performed by selecting the object with the mouse and 
then clicking and dragging. 

3.9. Layers 

One of the most important requirements of a visualisation system for visual impact is to compare scenarios. 
For example, the ability compare the relative impact of two proposed buildings is paramount for urban 
planners. Another important requirement is to show and hide detail or simply show and hide information 
such as vegetation. We developed a tool that allows the user to create, and show and hide layers. A layer in 
this context is a set of 3D objects. The user creates a layer by opening the layer dialogue and entering a name 
for the layer, and then selecting an object and adding it to the layer. A layer is also automatically created 
when objects are imported by an ASCII dataset. 

Figure 7. The viewshed analysis tool. 

2234



Greenwood et al., Using game engine technology to create real-time interactive environments to assist in 
planning and visual assessment for infrastructure 

3.10. Saving and concept of a file 

The user has the option of saving files and reloading them at a later date. A file in this context is the set of all 
current layers including the objects that reside within those layers. Therefore a “blank” file in this context is 
the static parts of the model. This is the terrain and possibly existing static built form. Files are saved in the 
Virtools NMO format. 

3.11. Video and screen capture 

Video and screen capture allow the user to take full advantage of the real-time render engine. With these 
capabilities the model becomes an infinite source of images and video.  Both still images can be captured as 
BMP files and videos can be recorded as AVI files on the fly. 

4. DISCUSSION AND CONCLUSION 

As demonstrated by our increasing client base, our tool is affordable and works well to serve the needs of 
large urban councils. We were motivated to use available software to produce effective and affordable 
software with minimal staff time requirements and in as short a time as possible. A strength of our approach 
is that we utilised existing software in a novel and user-driven way. 

Future development will focus in several areas. Our first priority is making all objects, except the terrain, 
editable. The goal is to make an application that allows the user to fully maintain and edit the content. The 
fact that existing buildings cannot currently be removed easily by the user is perhaps that biggest limitation.  
Next, further work needs to be done in interoperability with GIS databases. Most users of this technology 
already have large amounts of information in a GIS that they would like to be able to import and overlay with 
the existing model. A further area that many have expressed interest, particularly for urban environments, is 
animated traffic and crowds. Many sophisticated software packages exist for modelling traffic and crowds 
(Caliper, 2007; Quadstone, 2008), and these usually contain their own real-time 3D visualisation tool, but are 
usually only very limited in their functionality and quality. An import feature for traffic and crowds would 
greatly enhance the capabilities for both pieces of software. 

ACKNOWLEDGMENTS 

The author would like to acknowledge Banyule City Council for their extensive feedback and assisting in 
formulating the requirements and specifications of the software. 

REFERENCES 

Blanco-Muriel., M., Alarcon-Padilla., D.C., Lopez-Moratalla., T., Lara-Coira., M. (2001), Computing the 
solar vector. Solar Energy, 70(5), 431-441. 

Caliper (2007), TransModeler. Newton MA, USA 
Dassault Systemes (2006), Virtools 4. Paris, France 
Stock, C., Bishop, I.D., O'Connor, A.N., Chen, T., Pettit, C.J. and Aurambout, J-P. (2008), SIEVE: 

Collaborative decision-making in an immersive online environment. Cartography and Geographic 
Information Science, 35, 133-144. 

Quadstone (2008), Paramics. Edinburgh, Scotland. 

2235




