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Abstract: Some species have dimorphism in male; two types of males are distinguishable by their 
appearance. One is usually large called a dominant male, and the other is small called a subordinate male. 
The latter male often takes a strategy as sneaker that is usually not very conspicuous, but lives around the 
edges of dominant males. It sneaks fertilizations behind the dominant male. In most cases, females more 
prefer the dominant males than sneakers. A concrete example is orangutans. There are two types of adult 
male. The matured adult male (MA) has wide cheek pads and the average weight of MA is more than twice 
that of adult females. In contrast, the arrested adult male (AA) remains comparable in size to an adult female. 
The AA males are sneakers and forcibly copulate with females.  

Heretofore, many authors have studied male dimorphism. They usually applied the theory of evolutionarily 
stable strategy (ESS), and explained the evolution of alternative male tactics, especially the evolution of 
sneaker. Another theory to explain the sneaker is “best of bad job” (BOBJ). Though both ESS and BOBJ 
have accounted for the origin of alternative male tactics, these theories never take into account the 
sustainability of individuals.  

The present paper deals with such a mate-choice system on a square lattice, and focuses on the sustainability. 
Each lattice site is assumed to take one of four states: large or dominant male (X), small subordinate male 
(Y), female (Z) and empty (O). Females are assumed to prefer X compared to Y. Birth processes are carried 
out by two methods: local and global interactions. In the former, interaction occurs between adjacent sites, 
whereas in the latter it occurs between any pair of lattice sites.  

We first report the simulation results by global interaction. The results completely agree with the predictions 
of mean-field theory. Depending on parameter values, the population dynamics can be classified into two 
phases: unconditional extinction (UE) and survival/extinction (SE). In the UE phase, the species always goes 
extinct; the population cannot survive for any initial conditions. On the other hand, in the SE phase, the Allee 
effect can be observed. The SE phase has three equilibria; two are stable (extinction and survival), while one 
is unstable. When both male and female have high densities at the initial state, the system reaches the 
survival equilibrium. Otherwise, the system goes to the extinction. The Allee effect thus represents the 
threshold between survival and extinction.  

In real ecosystems, the interaction occurs locally. In the case of local interaction, the population dynamics 
qualitatively explained by the mean-field theory. Both UE and SE phases are confirmed, and in the latter 
phase the Allee effect is also observed. To explore the population sustainability, we obtain the equilibrium 
densities in stable states. It is found that the results for local simulations essentially differ from those for 
global simulations. Namely, in the case of local interaction, sustainable region is very narrow in parameter 
space, compared to the global interaction (mean-field theory). The survival equilibrium in local interaction is 
always situated near the extinction; it is not so easy to find mating partners in the neighborhood. 

In both local and global simulations, we find that the survival density of the overall population increases with 
an increase in reproductive rate of small males (Y). Under local simulations, the average density of the 
overall population is close to zero.  When the reproductive rate of small male (Y) increases, it acts as the 
avoidance of population extinction. This implies that sneaker is adaptive for the sustainability of all 
individuals.  
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1.    INTRODUCTION 
Some species have two types of males (dimorphism). One is called a dominant male, and the other is called a 
subordinate or satellite male. Good examples are salmon and orangutan. The salmon male phenotypes occur 
in two distinct morphs: the large ‘hooknose’ and the small ‘jack’ (e.g. Tanaka et al., 2009). Females more 
prefer the large hooknose (dominant male), and they spawn around the dominant males. Jacks occupy refuges 
near spawning beds to sneak fertilizations. Orangutans (Pongo pygmaeus) also have two forms of males: the 
matured adult male (MA) is called a dominant male. The average weight of MA is more than twice that of 
adult females. In contrast, the arrested adult male (AA) remains comparable in size to an adult female. The 
AA males are sneakers and forcibly copulate with females. Many authors have studied male dimorphism to 
explain the evolution of sneakers. One of main theories is evolutionarily stable strategy (ESS) (e.g. Gross, 
1985; Imhof et al., 2005; Iqbal and Toor, 2001; Nowak and Sigmund, 2004). Recently, the male dimorphisms 
in salmon and orangutan have been explained by our coauthors; Tanaka et al. (2009a) applied ESS for 
salmon and Tainaka et al. (2007) applied it for orangutan. Another theory to explain the sneaker is “best of 
bad job” (BOBJ) (e.g. Lee and Hays, 2004). However, both ESS and BOBJ never take into account the 
sustainability of individuals.  

In the field of ecology, lattice models have a growing interest (e.g. Tainaka et al., 2006; Nitta et al., 2008).  
Recently, our coauthors have presented a lattice model of mating population to explain the optimality of a 
strategy (e.g., sex ratio) not by ESS but by the sustainability (e.g. Tainaka et al., 2006). The present paper 
extends this model to deal with such a mate-choice system. In the section 2, we explain our model. It contains 
two important parameters α  and β , where α  denotes the sex ratio (male ratio per total population), and 

β  is the ratio of large males per total males. The values of these parameters are determined by genetic or 

non-genetic factors. Monte Carlo simulations are carried out by two methods: local and global interactions. 
In the former, interaction occurs between neighboring sites, whereas in the latter it occurs between any pair 
of lattice sites. In the section 3, the mean-field theory is presented to predict the simulation results of global 
interaction. The section 4 is devoted to report the simulation results for both local and global interactions. 
Simulation results of global interaction completely agree with the predictions of mean-field theory. We find 
for local simulations that the population dynamics qualitatively explained by the mean-field theory, but 
sustainable region is very narrow in parameter space, compared to the global interaction (mean-field theory). 
In the final section we discuss the sustainability and the evolution of sneakers. 

2.    MODEL AND METHODS  

2.1.  Model 

Consider a mating population on a two-dimensional lattice (see Fig. 1). Our model is an extension of the 
mating population introduced by Tainaka et al. (2006). The population on a square lattice is composed from 
large males (X), small males (Y) and females (Z). Each lattice site takes one of four states: X, Y, Z or empty 
(O). Females are assumed to prefer X compared Y. Birth and death processes update the lattice. The death 
process is defined by 

j ⎯→⎯  O          (rate: jm ),             (1a)  

where =j X, Y, Z, and jm  is the mortality rate of j.  

On the other hand, birth process is expressed by 

O   ⎯→⎯  X           (rate: αβB ) ,                     (1b) 

O   ⎯→⎯  Y           (rate: )1( βα −B ),            (1c) 

O   ⎯→⎯  Z           (rate: )1( α−B ),                (1d) 

where the parameter B  is the birth rate. In the case of 
global interaction, birth rate B is defined by 

    yzxzB rr YX
+= . 

 

Figure 1. Stochastic cellular automaton on a
two-dimensional lattice. Each lattice site
takes one of three states: large male (X),
small male (Y) and female (Z). The site O
means the empty. 

2273



Nitta et al., Spatial and temporal dynamics in mate-choice systems 

Here r j
 is reproductive rate of male j (=X, Y), and x , y and z  are overall densities of X, Y and Z, 

respectively. In the birth rate of local interaction, the overall densities should be replaced by local densities.  

2. 2.   Simulation Methods  

Simulations are carried out by two methods; local and global interactions. In the former, interaction occurs 
between adjacent sites, whereas in the latter interaction occurs between any pair of lattice sites. Both methods 
merely differ the birth rate B . The lattice site is updated as follows:  

1) Initially, we distribute X, Y and Z, where each lattice point is one of four sites; X, Y, Z and O.  

2) To update, we choose a target site randomly. 

i) If the site is occupied by j  ( =j X, Y, Z), then the death process (1a) is performed. Namely, the site j  is 

changed into O with the rate jm .  

ii) If the site is empty (O), we perform the birth processes. The site O becomes X, Y or Z by the rate αβB , 

)1( βα −B  or )1( α−B , respectively.  

We repeat step 2) by 2L  times, where 2L  is the total number of lattice sites. In this paper, we put 100=L . 
This step is called a Monte Carlo step. We further continue the updates, until the system reaches stationary state.  

3.  MEAN-FIELD THEORY 

When the lattice size is infinite, the population dynamics for global interaction can be represented by the mean-
field theory: 

( ) αβ)1( zyxyzxzxm
dt

dx
rr YXX −−−++−= ,            (2a) 

( ) )1()1( βα −−−−++−= zyxyzxzym
dt

dy
rr YXY ,    (2b) 

( ) )1)(1( α−−−−++−= zyxyzxzzm
dt

dz
rr YXZ ,             (2c) 

where the first (second) term in the right hand side of equation (2) represents the death (birth) process.  The 
factor )1( zyx −−−  in the birth term means the density of empty site (O). If 0=y  (or 1=β ), equation (2) 

represent the single-male system (e.g. Tainaka et al., 2007; Boukal and Berec, 2002). In the present paper, we 

consider the case of equal mortality rates: Xm = Ym = Zm =m.  

The final density in stable equilibrium can be obtained as follows. From the definition of sex ratio, the 
equilibrium state must satisfy the condition:  

  )1/(/)( αα −=+ zyx ,                    (3) 

Similarly, from the ratio of dominant male, we have the following equilibrium condition: 

  )1/(/ ββ −=yx .                  (4) 

For the simplicity, we consider the special case of 0=rY
. Inserting equations (3) and (4) into (2), we can 

obtain  

     ( )( )xbaxRx
dt

dx −−= ,                   (5) 

where  

    ( ) )/(1 αβα−= XrR ,                                                (6a) 
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  ( ) 2/1 Da −= αβ ,  ( ) 2/1 Db += αβ ,               (6b) 

   )
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1
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ααβ
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−=

Xr

m
D

.                                          (6c) 

 The population dynamics of equation (5) depends on the sign of D . When 0≤D , both a  and b  become 

imaginaries. In this case, equation (5) has a single equilibrium ( 0=x ), and the extinction always occurs 

( 0→x  for ∞→t ).  In contrast, when 0>D , equation (5) has three equilibria; both 0=x  and bx =  are 
stable, while ax =  is unstable. Depending on initial conditions, the system eventually reaches one of two 
stable equilibria. When both male and female have sufficiently high densities at initial state, the system reaches 
the survival equilibrium ( bx = ). Otherwise, the system goes to the extinction ( 0=x ). The dynamics in SE 
phase represents the Allee effect which means the threshold between survival and extinction. In summary, a 
phase transition is predicted according to the sign of D : unconditional extinction (UE)  for 0≤D , and the 

survival/extinction (SE)  for 0>D .  

To explore the sustainability of population, we obtain the steady-state densities in the SE phase ( 0>D ). It is 

obvious from equation (5) that the male density finally reaches bx = . By the use of equations (6), the steady-
state densities can be explicitly expressed as follows: 

    2/)1( Dx += αβ ,                                  (7a) 

    2/)1)(1( Dy +−= βα ,                                                  (7b) 

    2/)1)(1( Dz +−= α .                                                   (7c) 

The total population size ( zyx ++ ) at survival equilibrium is given by 

    2/)1( Dzyx +=++  .                                             (8) 

 

 

     

(a)                                    (b)                                        (c)                                                  

Figure 2. Typical population dynamics in the SE phase for global interaction (mean-field theory). (a) The
orbits on 3-dimensional space ( x , y , z ). (b) and (c): The projections into 2-dimensional spaces. The black

and white boxes respectively denote the stable and unstable equilibria. The dotted lines indicate the
equilibrium conditions (3) and (4). The orbits start from 20 initial conditions which are randomly chosen,

and they eventually reach one of stable equilibria. Model parameters are set as  ( r X
, rY

, m , β ) = (1, 0,

0.015, 0.3). 
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4. SIMULATION RESULTS  

4.1. Results of Global Interaction  
First, we report the simulation results for global interaction. Results obtained by computer simulations 
completely agree with the prediction of mean-field theory, so long as the lattice size is sufficiently large. The 
population dynamics can be classified into two phases: unconditional extinction (UE) and survival/extinction 
(SE). In the UE phase, the species always goes extinct. On the other hand, in the SE phase, the Allee effect 
can be observed. Fig. 2 illustrates the population dynamics for the SE phase. We here consider the special 

case that the reproductive rate rY
 of Y is zero. In Fig. 2, twenty initial conditions are randomly chosen. In 

the case of global interaction, simulation results completely agree with the predictions of mean-field theory. 
The SE phase has three equilibria; two are stable (extinction and survival), while one is unstable. To explore 
the population sustainability, we obtain the final survival densities in SE phase. In Fig. 3, the equilibrium 

densities are plotted against sex ratio α . Even when 0≠rY
, overall profiles of population dynamic never 

change. Fig. 4 shows the total density for different values of reproductive rate rY
 of Y. When rY

 

increases, the total density slightly increases.  

 

4.2. Results of Local Interaction  

Next we report the simulation results for local 
interaction. As predicted by the mean-field 
theory, the population dynamics is classified into 
unconditional extinction (UE) or survival/ 
extinction (SE) phase. In the latter phase, the 
system also reaches either extinct or surviving 
equilibrium. The final equilibrium in SE phase 
sensitively depends on initial spatial patterns. 
The boundary (seperatrix) in initial condition is 
still unclear.  To obtain steady-state densities at 
surviving equilibrium, we set the initial condition 
without the empty site. For instance, Fig. 5 
displays population dynamics under such initial 
condition. In Fig. 5, we use a higher value of 
reproduction rate (r X

= 5) and a lower value of 

mortality rate ( m =0.0015), compared to the 
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Figure 3. The equilibrium densities for
global simulation is plotted against sex ratio
α . Model parameters are the same as used
in Fig. 2. 

Figure 4. The total density at equilibrium for global
simulation. The increase of reproductive ratio of
sneaker (Y) gives slight change for equilibrium
density.  
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Figure 5. The population dynamics for local
simulation ( α =0.65).  Model parameters are set as
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, m , β ) = (5, 0, 0.0015, 0.3). 
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value used in Figs. 2, 3 and 4 ( r X
= 1, m =0.015). 

This is because the system under the local interaction 
easily becomes extinct. 

In Fig.6, the total equilibrium densities for local 
simulation are plotted against sex ratio α  , where each 
plot is obtained by averaging densities over the period 
48000 ≤< t 50000. It is found from Fig. 6 that the 
total density largely increases with the increase of rY

. 

In most cases of local simulation, the surviving region 
is very narrow as indicated in Fig. 6 (see the case of 

0=rY
). 

5.   DISCUSSIONS &CONCLUSIONS  

We have developed the lattice model of mate-choice 
system and obtained the population dynamics. We find 
the Allee effect. Namely, when the initial abundances 
of X, Y and Z are lower than certain thresholds, the 
population goes extinct. In contrast, when they are 
higher than the thresholds, the population can survive 
reaching in a stable equilibrium (see Fig. 2). Computer 
simulations are carried out by two methods: global and 
local interactions. In the case of global simulations, the 
population dynamics can be completely represented by 
mean-field theory.  

To explore the population sustainability, we obtain densities of X, Y and Z at stable equilibrium. It is found for 
global interaction that the population can survives in the wide range of parameter space (sex ratio) as illustrated 
in Fig. 4. In contrast,  the survivable sex ratio is narrow in the case of local simulations (Fig. 6). In the local 
simulation, the density peak usually stands out sharply.  

We discuss the evolution of sneakers based on the sustainability (Tanaka et al., 2009b). It is found that the 

total density increases, when reproductive rate rY
 of small male (Y) increases, or when the ratio β  of 

dominant male increases. Under local simulations, the average density of the overall population is close to 
zero (see Fig. 6). When the reproductive rate of small male (Y) increases, it acts as the avoidance of 
population extinction. This implies that sneaker is adaptive for the sustainability of all individuals.  

Finally the optimality of sex ratio α  is discussed. In the case of local simulations, the optimal sex ratio becomes 

larger than 1/2 for small value of β . This result looks different from the cases of real animals ( ≈α 1/2). We 

consider our model has some oversimplifications. In particular, we neglect a sterile period in female. For 
instance, females have a long pregnant period. Moreover, in real animals, eggs of females are energetically more 
costly than sperms (e.g. Togashi et al., 2006; Togashi et al., 2004). Hence, it takes long period for female to 
mature. If we modify our model to take into account such sterile properties of female, then the optimal sex ratio 
may become close to 1/2. 
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