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ABSTRACT

Model-reality comparison can be viewed in a communications context, with the observed data the “sent message,” the
model output “received message,” and the model the noisy channel over which the message is transmitted (Figure 1).

Figure 1. Communications system with source producing
H(X) and receiver seeingH(Y ). Amount of data
communicated correctly from source to receiver is the
mutual informationI(X ; Y ).

Information theory offers a way to assess literally the
“information content” of any system and offers a means
for objective quantification of model-observational data
fidelity. The Shannon entropy (SE)H(X) is the measure
of the amount of uncertainty, variability, or “surprise”
present in a system variableX , while the mutual
information (MI) I(X ; Y ) measures the amount of
shared information or redundancy between two variables
X andY . Information theory’s roots lie in the analysis
of communication of data across a noisy channel (Figure
1) and offer a scheme for quantifying how well a
messageX coming from a transmitter arrives asY
at the receiver. A more general information-theoretic
measure of message degradation is the Kullback-Leibler
divergence (KLD), which quantifies insufficiency of
agreement in the probatility density functions associated
with X andY . The ratio of MI to SE yields the amount of information shared by two datasets versus the information
content of one alone. Unfortunately, these information-theoretic techniques work best for discrete rather than continuous
systems. The reason is that evaluation of the SE for continuous systems—the differential entropy—does not constitute the
continuum limit of the SE. Relative quantities such as the MI and KLD are always valid in the continuum case and are the
continuum limit of their discrete counterparts, but they are just that—relative. This begs the question: Is there some way
one can benchmark it against some continuum surrogate for the SE? Thus, one faces a choice when using information
theory for model validation and intercomparison: (1) adopt coarse-graining strategies that are physically relevant, always
aware that computed SE results are specific to a given discretisation, or (2) treat the data as continuous and use the MI
combined with some benchmark quantity. In this paper, I adopt strategy (1), and restrict the scope to a variable that has
well-agreed-upon discretisations—total cloud cover, which by observational convention is frequently coarse-grained by
oktas, tenths, or percent.

I first review basic concepts from information theory. I put forward the notion that the SE is an alternative measure
of climate variability, and I evaluate it for reanalysis data and climate model output, producing global maps of the SE.
I discuss how to structure sampling from two datasets to construct “messages” for use in information-theoretic model
validation. I derive from the SE and MI a pair of fidelity ratios for assessing model-reality fidelity, and evaluate them
for total cloud amount. I apply a modified KLD to assess model-reality agreement for local, temporally sampled total
cloud and explain the relative strictness of the KLD- and MI-based validation standards. I conclude with a roadmap for
analysing and validating the informatics of climate.
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1 INTRODUCTION

The evaluation of climate model output remains an area of active research. Many researchers rely on comparison of
statistical moments, such as the mean and variance, or on correlation analysis. Moment-based statistical tests such as the
t- andF -tests rely on an assumption of normality of the underlying population. Correlation analysis between variables is
appropriate under the assumptions of normality, linearity, and homoskedasticity. Information theory provides an attractive
approach to higher-order statistical analysis that avoids the assumptions associated with correlation analysis and moment-
based hypothesis tests. The strategy in information theory is based on the underlying probability density either for a finite
set of states for a discrete variable or for a probability density function for a continuous variable.

In this study, I explore the idea of Shannon entropy as an indicator of climate variability. I also present two new quantities
for assessing model-reality fidelity that are based on Shannon entropy and mutual information. I define a procedure for
computing these quantities and estimating associated uncertainties. I find that these “fidelity ratios” impose a very high
standard of model-reality fidelity that is hard to meet for a typical climate model. I use a more lenient standard for model
probability density comparison—the Kullback-Leibler divergence—and explain how the low fidelity ratios result in some
cases from poor agreement between the respective probability densities of the model and reanalysis.

This is not the first use of information-theoretic quantities in climatology. Almost fifty years ago, Bagrov
introduced a “similarity index” for meteorological model-reality comparison that assumed underlying continuous normal
distributions (Bagrov, 1963). Much work has been done on the use of mutual information as an indicator of predictability
(DelSole and Tippett, 2006). Mutual information has also been used to study relationships between climate variables
(Knuth et al., 2005). Relative entropy has been used to validate global distributions of surface temperature (Shukla et al.,
2006). To my knowledge, however, this is the first use of information theory to express climate variability and to
present geographic distributions of Shannon entropy, mutual information-based fidelity ratios, and the Kullback-Leibler
divergence.

In this study I use total cloud cover to illustrate informatic climate variability. Total cloud cover has the advantage of
having standardised discretisations amenable to discrete-variable informatics and is of climatological significance because
it is an integrated diagnostic of parameterisations of atmospheric column physics, feeds back into atmospheric radiative
transfer, and is a variable for which widespread observations exist.

2 INFORMATION THEORY

Here I review key concepts from information theory and define terms used in the rest of this paper. Further details may be
found in standard textbooks (Cover and Thomas, 2006; Reza, 1994).

Consider a discrete variableX that can have any ofN possible values;X ∈ {x1, . . . , xN}. The probability of observing
each valueX = xi is 0 ≤ p(xi) ≤ 1, subject to the constraint

∑N

i=1
p(xi) = 1. TheShannon entropy(SE)H(X) is

defined as

H(X) = −
N

∑

i=1

p(xi) log [p(xi)]. (1)

The units ofH depend on the base of the logarithm: for base2, H is measured inbits; for natural basee, H is measured
in nats. If X is the set of values seen in a signal, thenH(X) is theamount of information in the signal. Note also that the
SE is nonnegative and finite.

Consider two discrete variablesX ∈ {x1, . . . , xN} and Y ∈ {y1, . . . , yM} defined with respective probabilities
{p(x1), . . . , p(xN )} and{p(y1), . . . , p(yM )}, subject to the above normalisation and nonnegativity constraints used to
define the SE. The probability of seeing the combination(xi, yj) is thejoint probability0 ≤ p(xi, yj) ≤ 1 and is subject
to the normality constraint

∑N

i=1

∑M

j=1
p(xi, yj) = 1. The joint entropyH(X, Y ) measures the combined information

content ofX andY and is defined as

H(X, Y ) =
N

∑

i=1

M
∑

j=1

p(xi, yj) log [p(xi, yj)]. (2)

If the variablesX andY are statistically independent, then the joint entropyH(X, Y ) is the sum of the SEsH(X) and
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H(Y ). If X and Y are somehow related and share information, then

H(X, Y ) = H(X) + H(Y ) − I(X ; Y ), (3)

whereI(X ; Y ) is thetransinformationor mutual information(MI):

I(X ; Y ) =

N
∑

i=1

M
∑

j=1

p(xi, yj) log

[

p(xi, yj)

p(xi)p(yj)

]

. (4)

The units for the MI are dictated by base for the logarithm in (4), just as the units are for the SE in (3). The MI is
symmetric; that isI(X ; Y ) = I(Y ; X). If the variablesX andY constitute identical signals, thenH(X) = H(Y ) =
I(X ; Y ). The MI satisfies the properties0 ≤ I(X, Y ) ≤ H(X) and0 ≤ I(X, Y ) ≤ H(Y ). The fidelity of transmitting
a signalX and receivingY can be quantified using thefidelity ratiosby

FY X =
I(X ; Y )

H(X)
and FXY =

I(X ; Y )

H(Y )
. (5)

FY X is the fraction of information present in signalX that was successfully transmitted toY ; note that0 ≤ FY X ≤ 1.
FXY is the fraction of information present in signalY that was successfully received fromX ; note that0 ≤ FXY ≤ 1.
In the case of perfect transmission of sourceX to receiverY , FXY = FY X = 1.

As we will see in Section 4, the mutual information is a high standard of quality for dataset intercomparison. Another
approach is to use theKullback-Leibler divergence(KLD), or relative entropy, an information-theoretic standard for
judging how well two probability densities based on a common partitioning scheme agree. Suppose for some variable
X ∈ {x1, . . . , xN} we have two candidate probability densitiesp(X) andq(X), which may be viewed as the “true” and
“modeled” densities, respectively. The KLDDKL is defined as

DKL(p ‖ q) =

N
∑

i=1

p(xi) log

[

p(xi)

q(xi)

]

. (6)

The KLD is not symmetric; that is,DKL(p ‖ q) 6= DKL(q ‖ p). The units for the KLD are defined the same way as
for the SE and MI. The KLD is sometimes called theKullback-Leibler gain, or information gain, required to represent
p(X) givenq(X), the “true” and “observed” distributions forX , respectively. On average one needsDKL(p ‖ q) extra
bits of information per symbol to representp(x) usingq(x) as a starting point. The KLD is nonnegative. If there is
perfect agreement betweenp(X) andq(X), thenDKL = 0. There is no upper bound for values ofDKL; for example,
singularities can arise in (6) ifq(xi) = 0 andp(xi) 6= 0, leading to infinite KLD.

For a continuous variableX ∈ (−∞,∞), it is possible to define adifferential entropy(DE) H(X) for x ∈ (−∞,∞)
by replacing the marginal probabilitiesp(xi) with a continuous probability density functionp(x) and replacing the
summation over state indexi in (1) with an integral with respect tox. It is tempting to think that the DE is the continuum
limit of the SE (3); however, it is not a valid measure of information content because the integral in the definition of the
DE is sensitive to the bin widthsdx and because it is possible forp(x) > 1 for some values ofx, thus making it possible
to have infinite or negative values of the DE. Furthermore, the values of the DE are not invariant under coordinate
transformations. Two information-theoretic quantities are, however, valid in the continuum limit: the mutual information
and the Kullback-Leibler divergence. In this study, the scope is restricted to discretised variables whose quantisation
arises from meteorological observation conventions.

3 DATA AND ANALYSIS

The “reality” data used in this study are the National Center for Environmental Prediction/Department of
Energy Reanalysis 2 dataset (NCEP-2; Kanamitsu et al., 2002) that cover the period January 1979–December
2008. Monthly averages are drawn from this dataset, which can be downloaded from the NCEP-2 Web
site (National Oceanagraphic and Atmospheric Administration Earth System Research Laboratory, 2009). The data
reside on a T62 Gaussian grid with 192 longitudes and 96 latitudes. The sample has 360 monthly averages at each grid
location. The NCEP-2 total cloud amount data (“tcdc”) are used in this study and have values in cloud cover ranging from
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zero to100 percent. The “model” data are from a 500-year control run of the Community Climate System Model (CCSM3;
Collins et al., 2006). Monthly averages are drawn from the repository of CCSM3 model integration output data maintained
by the Earth System Grid (United States Department of Energy and University Corporation for Atmospheric Research,
2009). The data reside on a T85 Gaussian Grid comprising 256 longitudes and 128 latitudes. The sample has 6,000
monthly averages at each grid location. The CCSM3 total cloud amount data (“CLDTOT”) are used in this study and
have values ranging from zero to1. For the SE calculations in this study, the data are used on their respective grids. For
the MI and KLD calculations, the CCSM3 data are interpolated from their T85 grid to the NCEP-2 T62 grid by using an
inverse-great-circle-distance weighted scheme that is valid assuming the geoid is a sphere.

Cloud amounts in the reanalysis and model data are coarse-grained into oktas, tenths, and percent, thus avoiding problems
associated with the DE. Data values are mapped into the interval[0, 1]. The data are then multiplied by8, 10, or 100
for oktas, tenths, or percent, respectively. A class value is assigned by rounding to the nearest integer to the data value.
Thus,9, 11, and101 classes result from coarse-graining by oktas, tenths, and percent, respectively. The data are organised
as time series of global geographic distributions; that is, they are three-dimensional datasets with dimensions longitude,
latitude, time). For this study, time series for fixed values of longitude and latitude are used as the samples from which the
SE, MI, and KLD are computed. Thus, maps of of these quantities may be drawn to illustrate the geographic distribution
of entropy and other information statistics.

Calculation of the SE and MI from equations (3) and (4) are straightforward; any instances in whichp(xi) = 0 in (3)
andp(xi, yj) = 0 in (4) provide zero contribution to the SE and MI, respectively. Fidelity ratiosFY X andFXY are
computed by using (5). Singularities can arise in the KLD calculation by using (6). For this study, singularities in the
KLD calculation are avoided by adding a small observability threshold termι to each value ofq(xi) and subsequently
renormalising by division by1 + Nι, whereN is the number of classes in the coarse-graining scheme. The observability
threshold was chosen to beι = 1

2NS
, whereNS is the number of time samples (6000 for the CCSM3 data). Thus,

large—rather than infinite—KLD values result where classi is observed forp(xi) but not forq(xi).

A sliding window sampling scheme is used to estimate uncertainties in the SE, MI, fidelity ratios, and KLD. For the SE
calculations, a 20-year window is used to computeH , and the window is advanced one year, removing the first year from
the sample and introducing a new year at its end. For the NCEP-2 data and CCSM3 data, this scheme results in 11 and 481
samples for their respective SE calculations. The mean〈H〉 and standard deviationσH are computed from the ensemble
of resulting SE values. For the MI and KLD calculations, all 30 years of the NCEP-2 data and a sliding 30-year window
of CCSM3 data are used, resulting in an ensemble of 471 values of the MI and KLD. Ensemble averages and standard
deviations are subsequently computed for the MI, fidelity ratios, and KLD.

4 RESULTS

Figure 2 shows the SE for total cloud cover discretised by oktas and percent from a thirty-year sample of NCEP-2 and
CCSM3 data. Figure 3 shows fields ofH for total cloud discretised by tenths for a twenty-year sliding window sample
of NCEP-2 and CCSM3 with their associated uncertaintiesσH . The values of the SE are sensitive to the number of
classes, but the overall spatial structure of the SE fields is preserved. In both NCEP-2 and CCSM3 data, relatively high
SE values are associated with the tropics, particularly in monsoon regions. The lowest values of the SE lie in a band over
the Southern Ocean centered at approximately50◦S. CCSM3 data have much more widespread high SE regions over land
than the NCEP-2 data and have regions of high entropy in western Asia and the U.S. Pacific Northwest that are not present
in the reanalyses. These high-entropy regions are associated with relatively flat probability densities for total cloud and,
in this sense, indicate greater variability. The associated uncertaintiesσH shown in the right panels in Figure 3 are small,
at most on the order of≤ 1%.

Figure 4 shows the fidelity ratio fields derived from the MI and SE for CCSM3 vs. NCEP-2 total cloud. Note that
worldwide these values are low, withFY X ≤ 35%. Over some areas of poor agreement (e.g., the Southern Ocean),
considerable noise (σFY X

/FY X ≈ 10% of its raw value) appears in the results, indicating variability in the ordering of
the tenths classes. The areas of best agreement are over land masses associated with monsoons and in other regions such
as the U.S. Pacific Northwest, the Middle East, and west-central Asia. Signal-to-noise ratios for these regions are high
in the monsoonal areas but low in the other areas with largeFY X . From this MI-based analysis, the temporal structure
of the occurrence of tenths classes agrees poorly. This poor agreement is due in part to interannual variability, but it may
have other causes stemming from model bias.

A model bias cause of poor performance in the fidelity ratio metrics shown in Figure 4 may be underrepresented or absent
classes in the probability density for CCSM3 total cloud discretised by tenths. The KLD offers a scheme for testing
probability density quality; and the KLD field total cloud is shown in Figure 5, with the NCEP-2 and CCSM3 cloud
probability densities playing the roles ofp(xi) andq(xi) in equation (6), respectively. For much of the world, low KLD
values indicate that the probability densities associated with CCSM3 total cloud agree well with with their reanalysis
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Figure 2. Shannon entropy for total cloud for CCSM3 and NCEP-2 using various discretisation strategies.

counterparts, particularly over land masses. Notable exceptions are polar regions over land, bands over ocean at30◦N and
30◦S, an equatorial band over ocean stretching from the eastern Pacific and across the Atlantic Ocean, and a region off the
west coast of South America. The associated uncertainties in the KLD valuesσKLD are bounded above by10%. Some
of the higher KLD values in these regions are caused by the absence of cloud amount classes in the CCSM3 probability
densities and are the singular terms in the KLD mentioned in Section 2. Of particular interest are the regions of good
agreement in probability densities over land that score poorly in terms of MI—for example, parts of Asia, Australia, and
the Americas. In these areas, CCSM3 reproduces the probability density well, but not its annual and interannual ordering
of cloud amount classes.

5 CONCLUSIONS AND FUTURE WORK

An information-theoretic approach to climate variability has been presented, and its utility in analysing total cloud amount
variability and in comparing model with reanalysis data has been demonstrated. This is the first stage in a much larger
plan to study the overall informatics of the climate system. Most climate variables are quantities that have no standard
discretisations; hence, they will require a rigourous strategy for coarse-graining climate data, such as the sample-based
optimal binning strategy for pdf estimation (Knuth, 2006). Future work will proceed on a number of fronts, including the
spatial informatics, coincidental and causal (Schreiber, 2000) informatic relationships between multiple climate variables,
and the way the informatic structure of the climate system may change as a result of anthropogenically induced global
warming.
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Figure 3. Shannon entropyH for total cloud for CCSM3 and NCEP-2 with sample standard deviationσH .

Figure 4. Fidelity ratio FY X for total cloud for CCSM3 and NCEP-2 with sample standard deviationσI . Units for
colourscale forFY X andσFY X

are in percent and thousandths, respectively.
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