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Abstract: The Burdekin River, Queensland, Australia drains a catchment area of ~130,000 km2 and 
contributes approximately 30% of the total sediment supplied (~ 3.8 t) to the Great Barrier Reef Lagoon from 
all Great Barrier Reef catchments. Much of this watershed (~115,000 km2) drains into the Burdekin Falls 
Dam, the largest dam reservoir in Queensland (1.86 million ML capacity). Current SedNet and ANNEX 
modelling (a sediment and nutrient transport process model) of the Burdekin catchment suggests that the 
Burdekin Falls Dam (BFD) is a very efficient trap for sediment and particulate matter. However, some field 
studies have suggested a much lower trapping efficiency. Improved knowledge of the amount of sediment 
trapped by the Burdekin Falls Dam is crucial for stakeholders managing sediment loads to the Great Barrier 
Reef Lagoon. The SedNet model is used to assist the identification and prioritisation of areas for remedial 
works within the catchment. If the Burdekin Falls Dam traps the high amounts of suspended sediment as 
predicted by the SedNet model then works can essentially be prioritised in the catchment area below the dam, 
a much smaller area (15,000 km2). 

A monitoring program was conducted over three wet seasons to better estimate the trapping efficiency of the 
Burdekin Falls Dam. We measured suspended sediment concentrations and particle size distribution in the 
Burdekin dam overflow and also in the large river catchments upstream and downstream of the dam to 
calculate sediment loads and examine sediment dynamics operating in the dam. We found that in moderate to 
large flow events, the Burdekin Falls Dam traps approximately 60% (±10%) of suspended sediment while in 
smaller flows the trapping efficiency is much higher (~80-90%). The results also show that the Upper 
Burdekin River arm of the catchment consistently contributes a large proportion of suspended sediments 
(>77%) delivered to the BFD even with the larger flows that occurred in the Cape and Belyando-Suttor 
catchments in the 2007/08 water year. Therefore we believe that the SedNet model is overestimating the 
sediment trapping efficiency of the Burdekin Falls Dam due to the trapping algorithm which is unsuitable for 
the Burdekin catchment area. Conversely, our calculations of sediment trapping appear to be higher than the 
estimates deduced from other field studies. Particle size distribution data show that the coarser sediment 
fraction >20 μm typically does not pass through the Burdekin Falls Dam.  
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1. INTRODUCTION 

The estimated total sediment flux to the 
Great Barrier Reef (GBR), Australia has 
increased by 4-5 fold since the arrival of 
Europeans ~150 years ago (Brodie et al., 
2003; Furnas, 2003; McCulloch et al., 2003).  
Therefore, the management of sediment 
runoff is a key goal within the Reef Water 
Quality Protection Plan (Anon, 2003).  Of 
the waterways within the GBR catchment 
area, the Burdekin River contributes the 
largest amount of suspended sediment to the 
GBR lagoon with an average annual export 
of 3.8 million tonnes, or approximately 30% 
of the total sediment supply to the GBR 
(Furnas, 2003).  In large, above average flow 
events such as the 2007/08 water year, the 
Burdekin River alone exported a total of 12.3 
million tonnes of suspended sediment 
(Bainbridge et al., 2008).  Therefore, the 
management of soil erosion in the Burdekin 
River catchment is a key goal for natural 
resource managers, although it is unclear 
where remedial works should be prioritised 
within this large catchment area (130,000 
km2). 

Current SedNet and ANNEX modelling of 
the Burdekin catchment suggests that the 
Burdekin Falls Dam (BFD), a large reservoir (1.86 million ML capacity) which is fed by much of the 
Burdekin watershed (~115,000 km2), is a very efficient trap for sediment and particulate matter (Fentie et al., 
2006; Post et al., 2006).  The latest models estimate that the BFD traps 77-82% of suspended sediment, and 
79% of particulate nitrogen and phosphorus, with negligible trapping of dissolved materials (Fentie et al., 
2006; Post et al., 2006).  As much of the remedial work undertaken in the catchment is targeted at reducing 
bulk suspended sediment loads to the GBR, works above the dam would not be undertaken for this purpose if 
the current dam trapping models are accurate.  However, field studies using sediment traps, water 
column/bottom profiling and water sampling within the dam reservoir during flow events do not support this 
high trapping efficiency (Faithful and Griffiths, 2000).  It is critical to have an accurate estimate of trapping 
within the BFD.    Here we present suspended sediment load data from a three year monitoring program in 
the Burdekin River catchment to quantify the sediment trapping efficiency of the BFD.  The three year 
dataset provides insights into the dam trapping efficiency over small (2005/06), average (2006/07) and large 
(2007/08) flow events.  Particle size data of suspended sediments collected during these events also provide 
insights into the sediment dynamics operating within this system.  

2. BACKGROUND 

The Burdekin River catchment is located within the Dry Tropics of north Queensland.  The tropics of 
northern Australia are renowned for highly variable seasonal and annual rainfall linked to the El Niño 
Southern Oscillation, tropical lows/cyclones and monsoonal activity (Lough, 2001).  This extreme variability 
is highlighted by the historical daily, annual and event discharge records of the Burdekin River. On average, 
over 80% of the freshwater discharged from the Burdekin River at the Home Hill (1922-1957) and Clare 
(1950-current) gauging stations (NRW gauge no. 120001, 120006) occurs during high flow events (Lewis et 
al., 2006).  This percentage is similar within the sub-catchments of the Burdekin Region.  The majority of 
sediments and nutrients are also transported through Burdekin River waterways during these high flow events 
(see Lewis et al., 2006).  Therefore, an event-focused approach to water quality monitoring is required to 
quantify the transport of sediments and nutrients in the waterways of the Burdekin River catchment.   

The BFD (Fig. 1) was constructed in 1987 largely to facilitate irrigation requirements for sugar cane and 
cropping in the lower Burdekin region and also to supply water to coal mines within the Bowen Basin to the 

Figure 1. Burdekin River catchment showing sampling 
sites.
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south (Faithful and Griffiths, 2000).  The dam, with a capacity of 1.86 million ML, is the largest reservoir in 
the State of Queensland (Faithful and Griffiths, 2000).  Despite its relatively large capacity, the dam is fed by 
a considerable upstream catchment area (~115,000 km2) and has overflowed in every wet season since 
construction (with one exception: see Faithful and Griffiths, 2000).  Four major tributaries of the Burdekin 
River unite just upstream of the BFD including the Burdekin River from the north, the Cape River from the 
west and the Suttor and Belyando Rivers from the south.  Queensland Department of Natural Resources and 
Water gauging stations measure stream flow on these tributaries and are located in close vicinity of major 
roads which cross these rivers, thereby providing optimal monitoring sites.  The measurement of suspended 
sediment concentrations during flow events at these sites enables the calculation of loads to estimate the 
supply of suspended sediment into the BFD reservoir (Lake Dalrymple). 

Field studies within Lake Dalrymple show that a turbid mid-flow layer develops during flow events due to 
the thermal stratification between the upper and lower water columns within the reservoir (Faithful and 
Griffiths, 2000; M. Cooper, unpublished data).  This finding, accompanied by data from sediment traps (J. 
Faithful, unpublished data) suggests that the majority of sediments are transported through the dam in 
average to large flow events.  However, measurements of suspended sediments upstream and downstream of 
the dam to calculate sediment loads have not been undertaken and so a quantitative estimation of trapping 
within Lake Dalrymple has not previously been performed. 

Estimates of average suspended sediment export from the Burdekin River alone range between 2.4 and 9.0 
million tonnes (see Lewis et al., 2006), although some of these estimates were calculated prior to the 
construction of the BFD and would not have considered its sediment retention capacity.  The influence of 
dams and reservoirs on sediment supply in the GBR catchments is an important consideration and may 
significantly reduce total sediment export (e.g. Pringle, 1991). 

3. METHODS 

3.1. Sample collection 

Suspended sediment samples were collected over three wet seasons (2005/06, 2006/07 and 2007/08) from the 
Burdekin River at Sellheim (flow gauge no. 120002C), Cape River at Gregory Developmental Road (flow 
gauge no. 120302B), Belyando River at Gregory Developmental Road (flow gauge no. 120301B), Suttor 
River at Bowen Developmental Road (flow gauge no. 120310A) and the BFD overflow (SunWater flow 
gauge) (Fig. 1).  As the Suttor River at Bowen Developmental Road gauge did not become operational until 
the 2006/07 wet season, we have used the downstream Suttor River at St Anns (no. 120303A; minus the 
Belyando River gauge) to estimate the total discharge (and thus suspended sediment load) for the Suttor 
River arm. 

A total of 362 samples were collected and analysed for total suspended solids (TSS) throughout the three 
monitored wet seasons including 37 samples from Burdekin River at Sellheim, 44 samples from the Cape 
River, 53 samples from the Belyando River, 44 samples from the Suttor River and 184 samples from the 
BFD overflow.  This total does not include selected duplicate samples for precision estimates and inter-
laboratory comparisons.  Surface water ‘grab’ samples (top 50 cm of water column) were collected with a 
bucket and rope following rainfall events which triggered significant stream flow.  Where possible, samples 
were collected over the rising, peak and falling stages of the flow hydrograph.  Samples were collected from 
the centre of the channel flow where possible, and if samples were collected from the edge, every effort was 
made to ensure samples were collected from the main flow, away from the backwash at the riverbank.  The 
samples were then well mixed with a stirring rod before being sub-sampled into 1L containers.  The samples 
were refrigerated and transported on ice to the laboratories for analysis.  

In addition, many samples from each site were analysed for particle size distribution to examine the potential 
for size-specific deposition within Lake Dalrymple and the river channel downstream. Particle size samples 
were selected to best capture the flow hydrograph over the rising, peak and falling stages.  A total of 110 
water samples were analysed from the sites over the three monitored wet seasons: 21 samples from Burdekin 
River at Sellheim, 16 samples from the Cape River, 19 samples from the Belyando River, 17 samples from 
the Suttor River and 37 samples from the BFD overflow.   

3.2. Analytical methods 

TSS analysis was performed at the Australian Centre for Tropical Freshwater Research laboratory at James 
Cook University (JCU), Townsville and at the Queensland Department of Natural Resources and Water 
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laboratory, Brisbane.  Samples of known volume were filtered through pre-weighed GF/C glass fibre filter 
papers with a nominal pore size of 1.2 µm.  The filter and retained matter were dried to constant weight at 
105°C.  TSS (in mg/L) was calculated by dividing the mass of the retained matter (in mg) by the volume of 
sample filtered (in L).  Selected TSS samples were duplicated to assess the repeatability of the analysis.  
Duplicate determinations were, on average, within 10% of each other.  Duplicate samples were also analysed 
by separate laboratories to ensure consistency.  These samples were typically within 10%.  

Particle sizing was conducted on selected water samples using a Malvern Mastersizer 2000 at the School of 
Earth and Environmental Sciences, JCU. Each sample was analysed at least twice and a mean was taken.  

3.3. Load calculations 

The collection of TSS samples near the locations of the gauging stations allows for the calculation of the 
mass or load of TSS exported through the sampled point of the waterway.  The highest concentrations of 
suspended sediments typically occur during the rising limb of the flow hydrograph before concentrations 
become diluted with increasing discharge volume or with decreasing flow. Therefore it is critical to sample 
all stages of the flow to obtain reliable load estimates.  The continuous time series flow data from the stream-
flow gauging stations and point source water quality data were entered into the BROLGA database, a 
software program designed by the Queensland Department of Natural Resources and Water, which calculates 
loads using linear interpolation.  The linear interpolation technique is considered the most suitable to estimate 
catchment loads given the available input data (Letcher et al., 1999; Lewis et al., 2007).  In some cases in the 
2005/06 and 2006/07 water years, the ‘full’ hydrograph event was not sampled at some of the sites and ‘tie 
down’ concentrations were added to capture the total flow range over these events.  Concentrations were 
deduced by using the best estimate possible with the available data. 

Approximately 9% (~10,000 km2) of the catchment area above the BFD is ungauged and includes waterways 
such as Sellheim River, Kirk River and Elphinstone Creek.  Monitoring data from the Kirk River and 
Elphinstone Creek were used to estimate the suspended sediment event mean concentration for this 
catchment area.  The flow contribution for this catchment area was estimated by developing a water budget 
using the BFD overflow data coupled with the measured capacity of the dam prior to the event flows.    

4. RESULTS 

4.1. Sediment load budgets 

For the catchments above the BFD, all streams had below average flows in the 2005/06 water year.  In the 
2006/07 water year, the Burdekin River at Sellheim and Cape Rivers had average flows while the Suttor and 
Belyando Rivers had below average flows.  All contributing rivers had above average flows in the 2007/08 
water year. 

 Our measurements suggest that the sediment trapping efficiency of the BFD was 88% in 2005/06, 62.5% in 
2006/07 and 58% in 2007/08 (Table 1).  The higher trapping efficiency in the 2005/06 water year is a product 
of relatively small catchment flows and also due to a lower dam water level prior to the onset of this wet 
season.  The consistency in the trapping efficiency estimates in 2006/07 and 2007/08 of ~60% (± 10%) 
suggest that this is probably more reflective of 
an ‘average’ trapping estimate.  Therefore, we 
suggest that SedNet models are currently 
overestimating the trapping efficiency of the 
BFD, using the trapping efficiency of 77-82%.  
Indeed, if the latest SedNet model incorporated 
60% dam trapping then the average annual 
export of 3.5 million tonnes (Kinsey-Henderson 
et al., 2007 using model of Post et al., 2006; 
note original estimate 2.6 million tonnes) is 
close to the estimate of Furnas (2003: 3.8 
million tonnes) and also to the loads calculated 
over 9 years of monitoring data (4.6 million 
tonnes: Bainbridge et al., 2008). 

Table 1. Summary of load data and sediment trapping 
estimates for the BFD and delivered to the coast at 
Clare 

Water 
Year 
(Oct-
Sept) 

Dam 
overflow 

discharge 
(ML) 

Inflow 
waters 

sediment 
load 

(tonnes) 

Overflow 
waters 

sediment 
load 

(tonnes) 

Sediment 
trapping 

(%) 

Sediment 
load at 
Clare 

(tonnes) 

2005/06 1,400,000 2,050,000 240,000 88 ± 2% 500,000 

2006/07 5,100,000 3,200,000 1,200,000 62 ± 7% 6,140,000 

2007/08 16,700,000 5,670,000 2,400,000 58 ± 9% 12,300,000
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Figure 2. Particle size distribution (PSD) of suspended sediment in inflowing rivers and passing over 
Burdekin Falls Dam (BFD) on 9 Feb 07 (top) and during event from 28 Dec 07 - 1 Jan 08 (bottom). 

4.2. Particle size analysis 

The particle size results show high variability across the flow hydrograph for the upstream rivers and also the 
BFD overflow.  This result suggests that different sources of suspended sediment are being transported from 
different lithologies/catchment areas during flow events.  All four major river arms upstream of the BFD 
drain considerable catchment areas and also contain several different rock/soil types.  Figure 2 shows the 
particle size distribution (PSD) of sediments entering and leaving the reservoir on 9 Feb 2007 and is 
representative of the qualitative impact of the dam on sediment transport seen in other events. During the Feb 
2007 event, approximately 75% of the inflow was from the Upper Burdekin River at Sellheim and it is 
apparent that the coarser sediments (> 20 µm) do not pass downstream of the dam.  

Generally, the dominant particle size fraction measured at all sites was in the fine to medium silt range, 
particularly when the distributions were unimodal (4 to 25 μm), although a finer clay fraction was also 
evident in all samples especially when a bimodal pattern was apparent. Previously it was thought that most of 
the ‘fine-grained’ particles were derived from the southern Belyando and Suttor River arms of the Burdekin 
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(Faithful and Griffiths, 2000), however, our data show that similarly fine particles can also be derived from 
the Upper Burdekin River at Sellheim and Cape Rivers.   

The high variability in the PSD occurring over single flow events in all streams (i.e. change from unimodal to 
bimodal distribution) suggests that different sources of sediments are being eroded in the catchment areas and 
reflect the different ‘parcels’ of water passing through the catchment over time.  Further study is required to 
determine the origin of the bimodal particle size distribution. 

5. DISCUSSION AND CONCLUSIONS 

The sediment trapping algorithm within the SedNet model is based on a well-established relationship 
between trapping efficiency and the ratio of reservoir capacity to annual inflow for ‘normal ponded 
reservoirs’ which receive runoff that is more evenly distributed throughout the year than is the case for the 
Burdekin River (Brune, 1953).  This algorithm predicts that ~80% of suspended sediment should be trapped 
by the BFD. Our measurements indicate that the BFD trapping efficiency is about 25% less, i.e. 
approximately 60% of sediment delivered during normal floods is trapped by the dam. We believe the 
algorithm used in Sednet may not be appropriate for the BFD, which experiences strong thermal stratification 
and highly episodic flows and therefore shorter residence times than is typically the case for temperate 
reservoirs (see Faithful and Griffiths, 2000).   

In contrast, suggestions that most suspended sediments would pass over the dam spillway based on physical 
measurements of turbidity and water column temperature appear to have underestimated the trapping 
efficiency of the BFD.  The turbid mid-flow layer that develops in Lake Dalrymple during event flows 
(Faithful and Griffiths, 2000) may only rarely reach the surface waters and pass over the dam.  In fact, during 
the large flows of the 2007/08 water year, the surface TSS concentrations measured across Lake Dalrymple 
were close to the TSS concentration collected in the dam overflow waters.  In addition, stratification in Lake 
Dalrymple was not observed during the moderate flows in 2004/05 (M. Cooper, unpublished data). 

Our data also show that the vast majority (~80%) of the suspended sediment load delivered to the BFD is 
derived from the Upper Burdekin River arm.  This finding supports the results of Cooper et al. (2006) who, 
using trace element and isotopic tracing methods, found that the bottom sediments within Lake Dalrymple 
were from the Upper Burdekin River.  Therefore, any on-ground management within the catchment intended 
to reduce ‘bulk’ suspended sediment delivery to the dam should focus on the Upper Burdekin River 
catchment area.  The available data also indicate that, in large flows, the majority (80%) of the total 
suspended sediment load exported from the Burdekin River (Inkerman Bridge; end-of-catchment) is sourced 
from the catchment area below the BFD.  This area below the dam only comprises 10% of the total Burdekin 
catchment area.  Although additional data are required to support these results, based on the current findings, 
remedial works to reduce the ‘bulk’ suspended sediment load exported from the Burdekin River should focus 
on the catchment area below the dam.  However, we note that this assertion only relates to the management 
of the ‘bulk’ suspended sediment supply and not to specific sediments which may travel further in the marine 
environment (i.e. types of clays) and thus may be more ecologically important.  
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