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Abstract: This research investigates turbulent natural convection in a triangular cavity heated by solar radi-
ation. This is a simplified model representing the sidearm of a lake or water reservoir. Lateral temperature
gradients exist due to the varying depth of the cavity, resulting in lateral circulation. These flows are important
in a reservoir as they can carry with them particles and various pollutants, transporting and mixing them with
the central section. Therefore study in this area is important in water quality management.

The solar radiation model consists of a heat flux from the sloped bottom boundary as well as an internal heating
source term in the body of the water. The heat flux at the bottom boundary induces natural convection including
convective plumes and a large scale circulation, while the internal heating acts to stabilise the flow through the
generation of a stable density stratification. Numerical simulations up to a Rayleigh number of 109 have been
run to investigate different approaches for representing the oblique boundary on a Cartesian grid using the finite
volume method.

In the initial case a Cartesian grid with a stepped boundary for the sloping bottom was used. This approach
gave relatively poor results. The steps appear to provide local perturbations in the velocity field that can trigger
thermal plumes. The thermal plumes are seen rising from the sloped boundary at intervals proportional to the
step size, and the number and location of plumes was found to vary significantly as the grid resolution was
changed. Refining the grid to a sufficient degree near the boundary is not practical for anything other than a
basic 2D model, since this requires that the simple Cartesian grid be fine over the entire domain.

Two alternative approaches are investigated; using a grid with cell aspect ratio equal to the slope of the bottom
boundary, and sloping the grid so that it is aligned with the boundary. Representing the bottom boundary using
an Immersed Boundary method is also currently being implemented. The Immersed Boundary method involves
using forcing terms in the flow equations to represent an interface or the surface of an object. The surface may
split a computational cell so that the grid does not need to be aligned with the surface.

Other approaches commonly used include cut cells for Cartesian grids, or body fitted coordinates with an
unstructured mesh. The methods investigated here have the advantage of greatly simplifying grid generation
and boundary condition implementation, while still being less computationally expensive than the alternatives.

The methods investigated aim to remove the local fluctuations that induce the early appearance of thermal
plumes. Changing the aspect ratio of the cells allows the Cartesian grid to remain aligned with the vertical
direction, however it is not possible to refine the grid close to the boundary. Aligning the grid with the sloped
bottom surface enables the grid to be refined close to this boundary, however the vertical plumes and density
stratification are now skewed with respect to the grid. This increases the magnitude of the numerical errors
associated with flux terms in the internal regions of the flow.

Keywords: Immersed Boundary Method (IBM), Natural Convection, Complex Geometry

18th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009 
http://mssanz.org.au/modsim09 

4149



1 INTRODUCTION

The flow domain investigated here is a 2 dimensional triangle as shown in Figure 1. Triangle cavities of this
type have relatively little coverage in the literature. One good example however is work by Lei & Patterson
(2002), which will be used to verify these simulations. The work of Lei & Patterson (2002) uses a curvilinear
grid to ensure the sloped bottom is aligned with the grid. This is convenient for representing the boundary
although it involves more complex formulation of equations and will also be less applicable to any future
work that may involve more complex geometry. In contrast the work in this paper uses a number of different
implementations of a Cartesian grid.

Figure 1. Flow domain.

The important parameters describing this problem are the Rayleigh number, Prandtl number, and aspect ratio of
the cavity. In order to remain consistent with Lei & Patterson (2002), an aspect ratio of 0.1 has been maintained
throughout this paper.

An important feature of the triangle cavity problem is that the heating is modelled as a solar flux through the
top surface. This provides an internal heating source that decreases with depth as the radiation is gradually
absorbed as it penetrates the water. This process may be modelled using BeerâĂŹs Law (see for example
Rabl & Nielsen (1975)). Lei & Patterson (2002) approximate the attenuation coefficient as having a single
value across all wavelengths, so the source term for internal heating in the cavity becomes (see also Farrow &
Patterson (1994))

S = H0ηe
ηy,

where H0 is the surface heating intensity, y the negative distance through which the radiation has travelled, and
η the attenuation coefficient.

This relation shows that the heating intensity is greatest close to the surface and decreases with depth. Also
since it is not horizontally dependent, this input does not induce circulation in the cavity, but in fact stabilises
the cavity since warmer water is on top of colder water.

In shallow areas a significant portion of the radiation penetrates the entire depth of the water, heating the
bottom surface and consequently heating the bottom fluid layer when this heat is transferred to the water. It is
for this reason that the shallow section of a reservoir is interesting. Heating at the bottom boundary does induce
instability in the flow, and is also horizontally variable since the depth varies across the cavity. Following Lei
& Patterson (2002) this is modelled as a boundary flux,

∂T

∂n̂
= −1

k
H0e

−Aηx,

where T is the temperature, n̂ the direction normal to the boundary, k the thermal diffusivity and A the aspect
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ratio of the cavity so that y = −Ax at the boundary. This assumes that all heat reaching the surface is absorbed
and then immediately transferred to the fluid by convection.

The flow in the cavity is dependent on the Rayleigh number, defined as

Ra = GrPr,

where Pr is the Prandtl number and Gr the Grasshof number

Gr =
gβH0h

4

ν2k
,

where g is the acceleration due to gravity, β the coefficient of thermal expansion and ν the kinematic viscosity.
The Grasshof number in this problem is defined using H0 since the height of the cavity changes accross the
width, as does the temperature difference between the top and bottom fluid layers.

2 METHOD

All simulations are performed using the PUFFIN code (Kirkpatrick (2002) and Kirkpatrick et al. (2003)) which
solves the Boussinesq form of the unsteady Navier-Stokes equations on a Cartesian grid. The code has been
used to simulate flows ranging from industrial flows such as swirling jets (Ranga Dinesh & Kirkpatrick (2009))
to environmental flows including purging of saltwater in a cavity by an overflow of freshwater (Kirkpatrick &
Armfield (2005)) and atmospheric boundary layer flow over a mountain (Kirkpatrick & Armfield (2009)).

(a) Original stepped boundary

(b) Stepped boundary with aspect ratio matching gradient

(c) Grid aligned with bottom boundary and stepped boundary at top and sides

Figure 2. Different methods of setting up a Cartesian grid: (a) is a standard non-stretched grid resulting in
a stepped bottom boundary, (b) has stretched cells such that the aspect ratio matches that of the boundary
gradient, and (c) has the entire grid tilted such that it is aligned with the bottom boundary, and the top and side
boundaries are now stepped.

Four main alternatives for grid setup are investigated here. These are a standard step cell bottom boundary
(Figure 2(a)), a stepped boundary on a grid in which the cell aspect ratio exactly matches the boundary gradient
(Figure 2(b)), a sloped grid such that the grid is aligned with the bottom boundary with stepped boundaries on
the top and side (Figure 2(c)), and finally the immersed boundary method on the bottom surface (Figure 3).
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2.1 Immersed Boundary Method

The Immersed Boundary Method (IBM) used is based primarily on work presented by Gao et al. (2007).
The method uses a second order Taylor series expansion to approximate the velocity at ghost cells located
immediately outside the boundary. In this 2D case with a straight boundary the approximation is made using
the cells as shown in Figure 4. The aim is to set values at the ghost cells that give the desired conditions at the
actual boundary location, even though the actual boundary location usually does not coincide with a grid node.

Figure 3. Immersed boundary. Velocity vectors shown are ghost values.

Figure 4. The value at the ghost node is calculated using the four points inside the flow shown. The ghost node
will cause the value at the boundary itself to be set to a desired value, even though it does not fall on a node.

Like Gao et al. (2007) the PUFFIN code uses a finite volume, fractional step method with a staggered grid.
This results in the nodes for W velocity being offset to the nodes for the U velocity (Figure 3).

Once the desired ghost node values are calculated as described above, they are implemented in the code using
a forcing function f , that is added to the momentum equation

∂u
∂t

+ u · ∇u = −1
ρ
∇p+ ν∇2u + f .

The semi-discrete form of the momentum equation is then represented by (see Fadlun et al. (2000))

un+1 − un

δt
= RHSn+ 1

2 + fn+ 1
2 ,

which by setting our desired condition un+1/2 = V n+1/2 then gives

fn+ 1
2 = −RHSn+ 1

2 +
V n+1 − un

δt
.
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Here RHS comprises the convective, viscous and pressure gradient terms and V is the desired velocity at the
boundary.

Implementation of the IBM is still underway so results will not be presented in this paper.

3 RESULTS

Figure 5 shows two simulations with identical conditions, with only the grid size changed. Changing the grid
size has the effect of automatically changing the step size as well. It is clear that the occurence of the thermal
plumes is being affected by this change in step size. In fact there is almost exactly one thermal plume rising
from each step in both the fine and coarse grid case, resulting in double the number of thermal plumes in the
fine grid case since the steps are half the size. Tests were performed on grids of resolution up to 1000 × 100
with no sign of convergence of the solution with increasing resolution. This indicates singular behaviour at the
boundary. A likely cause of this behaviour is the artificial perturbations introduced into the velocity field by
the step changes in the boundary.

(a) Grid size 100× 10 cells

(b) Grid size 200× 20 cells

Figure 5. Temperature colour plot at t = 120s for stepped grid with Ra = 1× 109, Pr = 7.0, cell aspect ratio
1 (10 cells per step). Temperature range is 0.3K. (a) course grid, (b) fine grid.

In contrast Figure 6 shows the same setup conditions again, however this time with a grid formed such that the
cell aspect ratio matches the boundary gradient. The number of thermal plumes is very similar in each case,
indicating that the number of thermal plumes is no longer influenced by the step size. This is expected since
by having cell aspect ratio equal to the boundary gradient, the continuity equation will force the first layer of
velocity vectors to be tangential to the boundary, hence there will be no artificial perturbations. However it is
also noted that the plumes have a very different appearance with this grid when compared to the case with a
cell aspect ratio of 1. The plumes appear to keep a much more structured, symmetrical shape, rising vertically
with much less spreading. In the square grid case they spread more rapidly and in a far less organised manner.
This is most likely due to the difference in vertical grid resolution.

Results for the sloped grid are shown in Figure 7. They demonstrate that removing the discrete steps from the
bottom boundary leads to a significant improvement, with little change in number of thermal plumes between
the grid sizes. Even though there is now a stepped boundary on the top and side, this appears to have little effect
on the flow characteristics. This is in agreement with Lei & Patterson (2002) who found that the top boundary
had little effect on the flow. They found that representing the top with either a Dirichlet or zero flux boundary
in fact had a negligible effect.
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(a) Grid size 100× 100 cells

(b) Grid size 200× 200 cells

Figure 6. Temperature colour plot at t = 120s for stepped grid with Ra = 1× 109, Pr = 7.0, cell aspect ratio
0.1 (1 cell per step). Temperature range is 0.2K. (a) course grid, (b) fine grid.

(a) Grid size 100× 10 cells

(b) Grid size 200× 20 cells

Figure 7. Temperature colour plot at t = 120s for grid sloped in line with bottom boundary andRa = 1×109,
Pr = 7.0. Temperature range is 0.3K. (a) course grid, (b) fine grid.

4 CONCLUSIONS

The numerical simulations shown here have demonstrated that in the problem of a triangle cavity heated by
solar radiation the method of representing the bottom boundary has a large effect on the accurate representation
of the Rayleigh-Benard instability. In particular we see that the flow changes significantly as we change the
grid size when a stepped boundary is used.

Changing the aspect ratio of the cells to be equal to the slope of the boundary greatly improved the results,
however this is far from flexible if a simulation was considered with slightly more complex geometry. It is
also more computationally expensive since for small gradients, in order to get sufficient horizontal resolution,
vertical resolution must be far greater than would otherwise be required.

Sloping the grid to align with the bottom boundary also greatly improved the results. This method however is
also not flexible enough for complex geometry cases, and in addition has the effect of the density stratification
and thermal plumes no longer being aligned with the grid, meaning the magnitude of numerical errors is likely
to increase.
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The Immersed Boundary Method is currently being implemented. This will allow removal of the stepped
boundary without requiring the grid to be sloped, or the use of cells of a particular aspect ratio. The local
fluctuations caused by the boundary representations already modelled will be removed, so it is expected that
the results will show far more accurate representation of the Rayleigh-Benard instability.

Once the computer model being developed here is complete it will be used to perform a series of high resolution
simulations of reservoir sidearms. We intend to use these results as a basis for a scaling analysis of the flow.
We hope that this analysis will yield simple parameterizations for the transport processes, which would then be
useful for representing sidearm transport in larger scale lake models.
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