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In addition to requesting water quality models that contain a robust and reliable calibration, clients and 
stakeholders are increasingly demanding some measure of model uncertainty. The estimation of parameter 
values for water quality models like WaterCAST can be a difficult task for modellers, especially for large and 
complex models. The uncertainty surrounding the resulting parameter values, and the predictions from the 
model that use these values, is hard to quantify and communicate to a broad audience. The methodologies 
investigated by this study aim to more adequately satisfy the clients driving the production of these models. 

A model-independent parameter estimation program, PEST, has been used to calibrate the basic rainfall-
runoff and constituent generation models contained in a complex WaterCAST project representing the 
Fitzroy River Catchment in central Queensland, Australia. The calibrated parameter values have been 
calculated through a supervised approach which incorporates both Tikhonov and subspace techniques of 
mathematical regularisation, maintaining a high degree of modeller satisfaction and confidence. The 
calibration process considers all of the complex interactions possible within the subcatchment-node-link 
network, meaning that optimised parameter values are immediately suitable for application to the model. 

One of the PEST tools employed in this process provides assistance in applying singular value 
decomposition. This assistance significantly reduced the number of model runs needed to achieve a 
satisfactory calibration. The same assistance was then used to attempt the unsupervised calibration of 100 
random parameter sets in a Monte Carlo style approach. A high level of model run efficiency of the re-
calibration process is achieved through using null space projection of random parameter fields to replace 
solution space components with those estimated through the previous calibration exercise. A total of 50 of 
these random parameter sets were able to have the statistical objective function minimised by PEST to within 
0.5% of that achieved with the supervised calibration. These 50 calibrated parameter sets allow a quantifiable 
analysis of the uncertainty surrounding both the range of parameter values that provide a satisfactory 
calibration, and the range of model predictions that each of these parameter sets leads to. The same 
techniques were also applied to sediment generation processes in a sub-region of the Fitzroy catchment.  

By calibrating model parameters within the WaterCAST environment, rather than in a secondary 
environment like the Rainfall Runoff Library, the calibration was able to consider all internal interactions. 
This has resulted in a statistical fit of predictions to observations that is a clear improvement (average 
coefficient of efficiency for daily flow at 20 locations increased from 0.50 to 0.79, average percent flow 
volume difference at 20 locations reduced from 91% to 15%). This calibration also satisfies the modellers 
need for an acceptable visual fit. Estimates of sediment generation from the WaterCAST model are 
accompanied by uncertainty estimates that most encapsulate the variability seen in a sporadic and variable 
observation data set. 
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1. INTRODUCTION 

Water quality models are being used by government, community groups and land managers to investigate the 
impacts of issues such as climate change and land management on water quality. Ultimately water quality 
model ‘owners’ want to utilise a modelling environment that is intuitive in design, easy to manipulate and 
navigate, and readily interpretable by a variety of users. However, as the investments and decisions arising 
from the analysis of these water quality models increase in size and importance, the model ‘owners’ are 
legitimately demanding that the model should also contain communicable measures of uncertainty. 

The estimation of appropriate parameter values for any model can be a complex process for surface water 
models. In most surface water models the hydrologic process is represented by one or more rainfall-runoff 
models, converting climate inputs to runoff and ultimately stream flow. In most cases these rainfall-runoff 
models are calibrated by comparing modelled and observed stream flow at one location, with ‘nesting’ of 
observation points throughout the stream network handled only by multiple, independent calibrations. The 
modelled stream flow at these locations will be the culmination of the runoff and stream flow from many 
upstream contributing rainfall-runoff and flow routing models, and the complex interactions between these 
contributors should be considered in the calibration process. The same ethos can be applied to the calibration 
of constituent generation models, such as land use based soil erosion estimates.  

A model-independent parameter estimation program, PEST (Doherty 2009), has been used to calibrate the 
basic rainfall-runoff and constituent generation models contained in a complex WaterCAST (Argent et al. 
2008) project representing the Fitzroy River Catchment in central Queensland, Australia. The mathematical 
regularisation employed allows use of prior knowledge and user expertise in the calibration process, and 
retainment of parameterisation detail that reflects system detail in the model. This calibration technique also 
enables a subsequent, quantifiable, analysis of uncertainty. This technique of uncertainty analysis has been 
utilised mostly in groundwater applications, however its use in surface water applications is increasing, with 
recent progress by Tonkin and Doherty (2009) forming the basis of the uncertainty analysis conducted in this 
project. 

2. STUDY AREA 

The Fitzroy River Catchment covers an area of approximately 140, 000 km2 in central Queensland, Australia 
(figure 1). The Fitzroy River flows to the Great Barrier Reef, and is therefore seen as a significant region in 
terms of water quantity and quality. This is a region of diverse climate and land management regimes, 
however most land management would be classified as extensive grazing, with some conservation areas, 
cropping, coal mining and minor horticulture also present. Rainfall is highly variable with much of the region 
being semi-arid but subject to occasional monsoonal rainfall and floods. The Fitzroy Catchment is also 
topographically diverse, and the soils and landscapes also variable. 

To investigate hydrologic parameter estimation and uncertainty the Fitzroy River Catchment was represented 
in a WaterCAST scenario by 396 subcatchments (figure 1). These subcatchments were the result of an 
automated WaterCAST Digital Elevation Model (DEM) process, with additional subcatchments placed to 
allow representation of major water storages within the stream network. Each subcatchment had 7 
‘Functional Units’ nominally assigned based on land use. Each functional unit instance was assigned a 
SIMHYD rainfall-runoff model (Chiew et al. 2002), each link in the node-link network was assigned a 
Laurenson non-linear flow routing model (Laurenson and Mein 1997), except for 12 links where a water 
storage model was applied (storage geometries and characteristics from the Fitzroy Basin Resource 
Operations Plan (Dept. Natural Resources and Water 2006)). A calibration period from 1st January 1985 to 
31st December 2005 was selected. Climate inputs for rainfall-runoff models were sourced from the SILO 
Data Drill (SILO 2004). 

For constituent generation (total suspended solids – TSS) parameter estimation and uncertainty analysis, a 
smaller region within the Fitzroy Catchment was studied. This 40, 000 km2 ‘Beckers’ area comprises most of 
the Dawson River Valley (figure 1), and is represented in the WaterCAST project by 119 subcatchments. A 
calibration period from 1st January 1986 to 31st December 2005 was selected. 
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3. METHODS 

3.1. Whole of Fitzroy Hydrologic Parameter Estimation 

The study area was broken into 20 calibration ‘regions’ according to the subcatchments contributing to the 20 
gauging stations with daily flow observations (figure 1). Throughout these regions the WaterCAST entities of 
subcatchments, functional units, links and nodes continued to operate as discrete units, however models 
belonging to similar ‘types’ were grouped for PEST assessment. This method of parsimony implies 
uniformity within, but not between, calibration regions. Each SIMHYD model presented to PEST had 7 
parameters available for adjustment. Each Laurenson non-linear flow routing model had 2 parameters 
available for adjustment. Parameter ranges were limited to those recommended in the relevant user guides. 

Observed daily flow totals were extracted from 
NR&W’s corporate data base environment 
‘Hydstra Surface Water Database’. A baseflow 
separation algorithm (Boughton 1993) was applied 
to the observed daily flow, with the resulting 
baseflow ‘observations’ also used in calibration 
(algorithm source Grayson et al. 1996). 

In solution of the inverse problem of model 
calibration, Tikhonov regularisation (Tikhonov and 
Arsenin 1977) was implemented by PEST as a 
means of providing numerical stability and of 
assimilating user expertise in the calibration 
process. ‘Preferred values’ were assigned to all 
parameters during the calibration process, and 
PEST was instructed to deviate from those 
estimates only to the minimum extent required to 
achieve a good fit between model outputs and flow 
measurements. It is assumed that the rainfall-runoff 
and flow routing models have a physical basis, and 
that the individual parameters are related to some 
real world phenomena (Doherty and Johnston 
2003). Thus the ‘preferred values’ incorporate 
prior knowledge and expert opinion, and the 
acknowledgement of these in the calibration 
process is highly valued by modellers. 

A PEST utility program, Time Series Processor 
(TSPROC), was used as a post-model processor to 
compare modelled flow outputs with observed data 

in a 60-part multi-component objective function. This objective function was comprised of the weighted, sum 
of squared residuals for daily flows, daily ‘baseflows’, and monthly volume accumulations at each calibration 
gauging station. The combination of various flow ‘functions’ in an objective function was shown to give 
satisfying ‘fits’ in small scale trials, and may also help to avoid the optimisation problem of ‘local minima’. 

Inter group weightings were adjusted to ensure that the 60 observation groups initially made an equal 
contribution to the total objective function. This weighting strategy was employed to ensure that the resulting 
calibration considered observations from each gauging station equally, as inherent flow magnitudes are 
substantially different throughout the catchment.  

Model calibration was implemented using the ‘SVD-Assist’ scheme implemented in PEST (Tonkin and 
Doherty 2005). Using this methodology a total of 120 ‘super parameters’ were defined as linear combinations 
of the 880 base parameters that are actually adjusted during the calibration process. These super parameters 
were defined on the basis of singular value decomposition (SVD) of a global sensitivity matrix computed on 
the basis of preferred parameter values to span the ‘calibration solution space’. Using this methodology, only 

Figure 1. Fitzroy River Catchment with flow observation 
points (gauging stations) and subcatchments indicated. 

Subcatchments are shaded by calibration ‘region’, with the 
‘Beckers’ study area also indicated. 
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120 model runs were required per optimisation iteration, in spite of the fact that values were optimised for all 
880 model parameters, and that Tikhonov constraints are applied to these base parameters. 

The parameter set from the 4th optimization iteration was selected as the ‘calibration’ parameter set, as the 
‘fits’ were satisfying to the modeller without too much deviation from the ‘preferred’ values. The objective 
function reduced from an initial value of 60,000 to 29,833. 

3.2. Whole of Fitzroy Uncertainty Analysis 

100 random sets of the 880 parameters employed by the model were then generated, with parameter values 
gained from the calibration used to ‘centre’ the random distribution within the literature recommended 
parameter ranges. Using the ‘Null Space Monte Carlo’ functionality available in PEST (Tonkin and Doherty 
2009), these were modified such that they respected calibration constraints. This involved: 

• Calibration and solution null spaces were defined based on SVD of the global sensitivity matrix. 
• Each random parameter set was projected onto these spaces. 
• The solution space component was removed and replaced by that of the calibrated parameter set. 
• SVD-Assisted adjustment of the solution space component was then undertaken using the 

methodology described above. 

Using SVD-Assist and 120 ‘super parameters’, 50 of the 100 null space projected random parameter sets 
achieved an objective function value of 30,000 or less (within ~ 0.5% of the ‘calibrated’ objective function 
value) in a single optimisation iteration. The outcome of this procedure was a set of 50 parameter fields 
whose ‘fit’ was almost as good as that of the originally calibrated parameter field. All of these were 
considered to be reasonable in terms of the processes that they represent, but all of which were significantly 
different. The 50 parameter sets that achieved this near-calibration, and the model predictions from these 
parameter sets, form the basis of our quantified uncertainty analysis. The parameter sets and predictions can 
be subjected to probabilistic analysis, the outcomes of which can range from simple estimates of predictive 
mean and standard deviation, to more complex non-parametric analysis based on predictive frequency and 
cumulative frequency distributions. In this paper graphical representations have been selected. 

3.3. ‘Beckers’ Hydrologic Parameter Estimation and Uncertainty 

In modelling this subregion of the total Fitzroy model domain, rainfall-runoff (SIMHYD) models 
representing 6 functional units within 7 calibration regions were calibrated against daily observed flow data 
at 7 gauges (refer figure 2), for the period 1986 - 2005. Preferred parameter values were supplied to PEST 
based on local knowledge and previous research, and both Tikhonov and SVD-Assisted methods of 
regularisation were employed. PEST was instructed to use 35 ‘super parameters’ to represent linear 
combination of the 429 parameters available. A 21 part, equal initial contribution objective function was 
formed using residuals from daily flow, monthly volume and exceedence times. Daily flow observations (and 
their paired model outputs) were weighted individually in a manner that emphasised low flow values. 

After a calibrated parameter set was derived, a Null Space Monte Carlo process was conducted on 300 
random parameter sets, with 133 of these ‘realisations’ achieving satisfactory ‘calibration’ at an average cost 
of about 15 runs per calibrated parameter field. 

3.4. ‘Beckers’ Total Suspended Solids (TSS) Parameter Estimation and Uncertainty 

To calibrate the Event Mean Concentration / Dry Weather Concentration (EMC/DWC) parameter values for 
each functional unit, daily TSS concentration (mg/L) observations were processed for the period 1986 – 2005 
at each of the 7 calibration gauging stations. Where multiple observations occurred on any day, an average 
concentration value was calculated. The number of daily TSS concentration observations was sparse, with 
temporal and spatial distribution sporadic. Of the 346 daily average TSS observations used, the average 
number of observations at each site was only 50 (with a minimum of 6 and a maximum of 86). 

A single set of two EMC/DWC parameters were estimated during this stage. These comprised a single EMC 
and DWC value applied to ‘Grazing Open’ land throughout the entire catchment. Fixed ratios between values 
for these parameters and those for other land uses were assumed. Different values for these parameters were 

3161



Ellis et al., Applying PEST (Parameter ESTimation) to improve parameter estimation and uncertainty 
analysis in WaterCAST models 

estimated in 134 separate calibration exercises, one for each member of the 133 calibration-constrained 
random hydrology parameter sets, and one for the original calibrated parameter set. 

The outcome of this process was a suite of 134 parameter sets for both hydrologic and water quality model 
components, all of which are very different, and none of which can be rejected as a possible catchment wide 
hydraulic property characterisation. Model predictions have been made with all of them, thereby allowing 
exploration of the uncertainty of those predictions. 

4. RESULTS 

4.1. Whole of Fitzroy Hydrology 

Statistically the ‘calibrated’ parameter set yields flow predictions that provide a good match between 
observed and modelled flows at 20 locations throughout the catchment. Figures 2 and 3 compare the 
statistical assessment of predictions made from the calibrated parameter set with predictions using parameter 
sets (relevant to each calibration region) gained from the Rainfall Runoff Library (Podger 2004). The 
parameter sets from the RRL made use of a variety of optimisation techniques, and considered daily flow and 
total volume components, however the RRL environment can not account for the effects of flow routing and 
water storages. The PEST derived calibration parameter set was able to consider all of these interactions 
throughout the 20 regions simultaneously. 
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Figure 2. Coefficient of Efficiency for daily flow 
predictions at 20 observations locations throughout the 

Fitzroy Catchment. 

Figure 3. Total volume difference between predicted and 
observed flow at 20 observations locations throughout the 

Fitzroy Catchment. 

Also of importance to modellers is the visual ‘fit’ when predicted flows are shown with observed. Figure 4 
illustrates a visual comparison for the PEST derived calibration. 

The range of values for each parameter throughout 
the 50 calibrated realisations can be represented 
graphically to indicate the range and distribution 
of each particular parameter within a quantified 
uncertainty assessment environment; figure 5 
demonstrates this. In this case the assessment 
environment consists of 50 randomly produced 
parameter sets that each statistically satisfy the 
calibration objective function. The sensitivity of 
the optimisation objective function to changes in 
each parameter value is easily ascertainable from 
PEST. The magnitude of the sensitivity, whilst not 
shown here, can be interpreted as an indication of 
the likelihood that a change in this parameter will 
de-calibrate the model. 

The uncertainty surrounding model predictions can also be analysed using the 50 calibrated realisations of 
parameter sets. For any intended analysis the model outputs gained from using each of the parameter sets can 
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Figure 4. Comparison of predicted daily flow with observed 
daily flow at gauging station 130003AB for 1998 – 2001. 
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be used to represent the range and distribution of model predictions within a quantified assessment 
environment. Figure 6 illustrates how this may be done graphically, probabilistic analysis could also be 
conducted if project deliverables require this. 
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Figure 5. Frequency histograms representing the range of values for individual parameters within 50 calibrated realisations 
of parameter sets, categories that include the parameter value from the initial regularised calibration have a darker shading. 

Parameters represented range from a ‘high’ objective function sensitivity (A) to low objective function sensitivity (B). 
 
The fact that observed flows were not 
always within calculated predictive 
uncertainty ranges shown in figure 6 is 
of some concern. Obviously, these 
ranges are not broad enough. The 
figure suggests that the Null Space 
Monte Carlo process should have 
allowed further parameter variability 
than was actually allowed (for example 
by specifying a higher objective 
function threshold at which calibration 
is deemed to occur, or by allowing 
broader pre-calibration probabilities 
for some or all parameters), or that 
features such as rainfall uncertainty 
within different parts of the catchment 
contribute more to the uncertainty of model predictions than does parameter uncertainty. 

4.2.  ‘Beckers’ Total Suspended Solids 

Using null space projection a total of 133 random 
parameter sets that satisfied the calibration 
objective functions, considering both hydrology 
and TSS generation, were produced. As with the 
whole of Fitzroy hydrology analysis, the range and 
distribution of each parameter throughout the 133 
realisations of parameter sets can be analysed and 
communicated. Figure 7 illustrates how model 
predictions (from the calibrated parameter sets and 
each of the realisations) of TSS concentration (and 
ultimately TSS load) at a given location may be 
graphically presented. Tabular summaries and 
statistics can also be utilised in this analysis and 
communication process. The fact that observed 
TSS levels are within predictive confidence bands 
is pleasing to note. 

5. CONCLUSIONS 

By calibrating model parameters within the WaterCAST environment, rather than in a secondary 
environment like the Rainfall Runoff Library, the calibration was able to consider all internal interactions. 
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Figure 6. Model predicted daily flow (and observed daily flow) for 
gauge 130003AB for the period March – July 1990, including predictions 

from 50 calibrated parameter set  
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Figure 7. Daily model predictions of TSS concentration at 
gauge 130324A between November 1995 and March 1996. 
Model predictions are made from the calibrated parameter 

set and 133 random parameter sets that also satisfy the 
calibration objective function. 
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This has resulted in a statistical fit that is a clear improvement. Calibrating parameters in such a way 
currently requires the use of optimsation software, such as PEST. The use of Tikhonov regularisation and 
singular value decomposition means that PEST, when used in this manner, will employ less complete model 
runs than other comparative techniques. The predictive analysis provided by PEST’s Null Space Monte Carlo 
capability also provides a quantitative assessment of parameter and prediction uncertainty. 

The use of Tikhonov regularisation to adhere closely to a supplied set of ‘preferred’ parameter values has 
forced the modellers to more critically review the existing data and knowledge pertaining to the system being 
represented. The modellers can also be satisfied that this knowledge has been considered in the calibration 
process The use of SVD-Assist and ‘super parameters’ has informed the modellers about parameter 
sensitivity in a way that was previously unavailable in this environment. The application of null space 
projection to random parameter sets has allowed a quantifiable range of parameters and model predictions to 
be rapidly produced and assessed for uncertainty analysis. While predictive uncertainty may have been 
underestimated in one of the examples presented above, the method can easily allow for greater uncertainty 
simply through ‘loosening’ calibration constraints and by allowing for greater parameter variability than was 
allowed. 

This uncertainty analysis technique introduces a degree of subjectivity into the process. The modeller must 
supply estimates of likely parameter distributions prior to the production of random parameter sets. Also, to 
minimise the computational burden of multiple random parameter set re-calibration the modeller may decide 
under-estimate the dimensionality of the null space when setting up the null space projection process through 
which multiple calibration-constrained parameter sets are obtained. In doing so, the potential for parameter 
and predictive variability may be reduced (at the same time that computational efficiency is increased). This 
is likely to have occurred in the hydrologic analysis of the whole Fitzroy Catchment presented in this study. 
However, despite these subjectivities and simplifications, the resulting uncertainty analysis is transparent, 
quantifiable, readily communicable and applicable at the scale at which this type of water quality model 
informs land management decisions. 
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