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Abstract: Lake Biwa is the largest freshwater lake in Japan, located in west central Japanese main land. 
We report the result of long-term trend analysis of time series of Chlorophyll-A in Lake Biwa. The 
concentration of Chlorophyll-A is a barometer of phytoplankton growth. The higher the concentration, the 
worse the water quality and the more probable we have the danger of red tides and blue-green algae. Data has 
been observed through the water quality investigations conducted by Shiga Prefecture and the Ministry of 
Land, Infrastructure, Transport and Tourism. Data are generally observed from April 1979 to March 2003, 
measured at the fixed points once in a month, though the data lengths and the observed items vary.  

The first part of this presentation works on the removal of seasonal pattern from a given time series. Because 
the periodic pattern due to yearly climate change or some general social activities is a nuisance for trend-
analysis, it should be removed in advance. For this aim, we employ unobserved component time series 
models where the observation is decomposed into several unobserved components. Stochastic constrains on 
the smoothness of the variability of the components lead to constrained least squares solution, which can be 
represented in a Markov form, a state space representation.  

Based on the trend estimates obtained by the observation sites, we show a contour plot of the Chlorophyll-A 
concentration for a given time point via spatial smoothing and interpolation. Station-wise plots of the 
estimated trends of Chlorophyll concentration reveal that the clarification of north Lake Biwa made progress 
in 1980s while the south lake finally purified around 2000. This can be visually confirmed by the spatially 
smoothed contour plots. One of the background for the recent low concentration of Chlorophyll-A can be 
sought for the decrease of effluent impact, most of which could be accounted for the improvement of 
sewerage system of the towns around the lake. 

After this preliminary stage, we obtain the trend series of measured substance by every monitoring point. In 
the next step, we examine the significance of the estimated trend via formal statistical tests. We report the 
results of two different kinds of unit root tests, ADF test and KPSS test that are standard tools in the context 
of econometric time series analysis. Unit root tests are originally the tools to determine whether the process is 
non-stationary or trend stationary. In this paper, however, we are not interested in such a distinction.  

For example in ADF test, the null hypothesis is non-stationary (or the existence of stochastic trend). Even 
when the null is rejected, as long as the coefficient of the linear trend is significant and its sign is negative, 
we confirm that there is an evidence of decreasing trend in Chlorophyll concentration. On the other hand in 
KPSS test, the null is trend stationary. Even in case the null is not rejected, we demonstrate the existence of 
trend via the significant (and negative) coefficient of the linear trend.  

Generally speaking, we witnessed the existence of (downward) trend at almost every site with respect to the 
concentration of Chlorophyll-A. If we regard the estimated trend as data, the results often support the 
existence of deterministic trend. On the other hand, when we use the seasonally adjusted data, stochastic 
trend is supported in many cases. The reason is rather obvious. If we rely on the extracted trend only, 
sometimes we work on very smooth data. Then data does not contain much variability, and the deterministic 
time trend is sufficient to describe the time series data. Seasonally adjusted series, to the contrary, contains 
irregular part, so it becomes more difficult to separate the irregular part from trend. In such a case, stochastic 
trend is so flexible that it can show better fit to the data. It is conjectured that by this reason the stochastic 
trend is preferred for the seasonally adjusted data.  
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1. INTRODUCTION 

This article reports the result of long-term trend analysis of time series of measurement of various substances 
in Lake Biwa. Data has been observed through the water quality investigations conducted by Shiga 
Prefecture and the Ministry of Land, Infrastructure, Transport and Tourism. Data are generally observed from 
April 1979 to March 2003, measured at the fixed points once in a month, though the data lengths and the 
observed items vary. 

This article consists of two parts. The first part works on the removal of seasonal pattern from a given time 
series. Because the periodic pattern due to yearly climate change or some general social activities is a 
nuisance for trend-analysis, it should be removed in advance. After this preliminary stage, we obtain the 
trend series of measured substance by every monitoring point. In the next step, we examine the significance 
of the estimated trend via formal statistical tests. We report the results of two different kinds of unit root tests 
that are standard tools in the context of time series analysis. 

2. SEASONAL ADJUSTMENT OF ENVIRONMENTAL TIME SERIES 

There are a variety of observed items available. In the sequel, partly due to the limit of the space, we only 
report the results on Chlorophyll-A.  

2.1. Constrained Least Squares 

Suppose we concentrate our interest only on Chlorophyll-A. Now we have a single time series observed at a 

given monitoring point. For this time series ),,1( Ttyt = , we assume it can be decomposed into trend 

component tμ , seasonal component ts , and irregular component tε  in such a way as ,tttt sy εμ ++= or 

as .tttt sy εμ ××=  As a multiplicative form can be reduced to an additive form by logarithmic 

transformation, we only discuss an additive model here.  

An additive decomposition model can be regarded as a linear regression model where tε  is an error term, 

while tμ  and ts  are unknown regression coefficients. However, tμ  and ts  are not fixed constants but time 

varying. The number of unknown parameters are 12 +T  including the variance of the observational noise 

tε  compared to the number of observations is T . We need additional assumptions to solve this least squares 

problem. 

Now we assume some kind of smoothness of time transition for trend and seasonal components. Intuitively, it 

is meant by 1−≈ tt μμ  and 12−≈ tt ss . Let ttt uuu 321 ,,  be the normally distributed random variables with 

mean zero and variance 2
iτ  respectively, then we specify the smoothness constraints as 

ttttt u121
2 2 =+−=Δ −− μμμμ  and .212

12
tttt usss =−=Δ − For the seasonal components, we can put 

the assumption that the total of the seasonal variations within a year sums up to nearly zero, namely 
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Together with the assumption on the irregular part that tε  follows a normal distribution with mean 0 and 

variance 2σ , tμ  and ts  can be obtained as the solutions to the following constrained least squares problem,  
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where 22 /στλ ii = . tμ  and ts  are the parameters in some original sense, while 2
iτ  is the parameter that 

governs the probability distributions of the original unknown parameters. Hence it is called the hyper 
parameter which is usually estimated by the method of maximum likelihood based on the marginalized 
likelihood. One of the software implementation of the idea explained so far is BAYSEA by Akaike and 
Ishiguro (1980). 
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2.2. Use of State Space Form 

Introducing a state space form is much more advantageous than a constrained least squares point of view to 
understand the structure of unobserved components models. To save type setting space, we consider a 

quarterly time series case in which we assume the second order trend model tt v1
2 =Δ μ  and the summation 

type seasonal component model  = − =3

0 2j tjt vs  to guarantee the identifiability of the components. The 

observed time series ty  essentially consists of two unobservable components tμ  and ts . Note that tμ  and 

ts  depend on )',,,,( 321211 −−−−−− = tttttt sssx μμ . The vector tx  constitutes the essential set of information 

that describe the probability law of the time series, hence is often referred to as the state vector. Let 

)',( 21 ttt vvv = , then the assumed constraints can be rewritten as the transition equation of tx  as 

ttt GvFxx += −1 , where the matrices F , G  are given by  
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respectively. This is called the system equation.  

Once the value of the state tx  realized, the time series ty  is observed as the sum of the part of state 

variables and the present irregular variation tε . Namely, the way we obtain the observation can be expressed 

as ttt Hxy ε+=  by the matrix )0,0,1,0,1(=H . This is referred to as the observational equation. We say 

we have a state space form of a given model when both the system and the observational equations become 
available.  

Once we obtain a (linear Gaussian) state space form, given the value of hyperparameters, we can estimate the 

state tx  by using the recursive algorithm called the Kalman filter. The values of the hyperparameters can be 

calibrated by MLE, defining the likelihood by the accumulation of one-step ahead prediction error tt Hxy − . 

See Kitagawa (1993) for example. Kitagawa's DECOMP is one of the software implementation based on the 
idea stated above. (See Kitagawa (1981).) What is actually used in the empirical analysis of this paper is E-
DECOMP which is implemented as the add-on macro works on Microsoft Excel. 

2.3. Preliminary Data Analysis 

Figure 1 shows the plots of the estimated trend 
values of Chlorophyll-A by the 46 observation 
locations, and also by a fixed time. The blue line 
corresponds to April 1980, red to April 1990, 
and green to April 2000, respectively. Note that 
the horizontal axis is not the time but just the 
nominal number of the measurement sites. So 
these are not time series plots. Having said so, 
left in the horizontal axis generally corresponds 
to the north of the lake, and right to the south 
vice versa. Change in time is reflected on the 
shift of the curves; they are shifted 
downwardedly as time goes, which shows that 
the concentration of Chlorophyll-A is recently 
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Figure 1. Secular change of the concentration of 
Chlorophyll-A. 
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gradually diminishing.  

The concentration of Chlorophyll-A is a barometer of phytoplankton growth. The higher the concentration, 
the worse the water quality and the more probable we have the danger of red tides (Akashio) and blue-green 
algae (Aoko). One of the background for the recent low concentration of Chlorophyll-A can be sought for the 
decrease of effluent impact, most of which could be accounted for the improvement of sewerage system of 
the towns around the lake.  

Based on the trend estimates obtained by the observation sites, we can draw a contour plot of the 
Chlorophyll- A concentration for a given time point, by performing spatial smoothing and interpolation. 
Contour plots in Figure 2 are, so to say, made by embedding the data drawn in Figure 1 in to a map (and by 
smoothing).  

Blue colored area shows that there we have relatively good quality of water. Looking at these three panels 
give us an impression that in the last two decades there has been a substantial improvement of the water 
quality in Lake Biwa. Comparing April 1980 and April 1990, we visually confirm the remediation in north 
area of the lake, while the south still had some room for improvement. Setting April 2000 against April 1990, 
we see the last decade witnessed the water quality improvement in south area, too. 

Three contour plot panels in Figure 2 are drawn by using GMT, The General Mapping Tools. 
(http://gmt.soest.hawaii.edu/) Generally speaking, spatial smoothing and interpolations heavily depend on the 
choice of basis functions and tuning parameters. Admittedly, doubts should be casted to the colors of area 
where the data is sparse. However, the aim of these drawings here is a sort of rough visual check of 
Chlorophyll-A concentration in every 10 years up to 2000. We just tried 2D visualization of 1D plots in 
Figure 1, and do not mean to assert these show a sort of ‘optimal’ interpolations.  

 

 

Figure 2. Contour plots of the concentration of Chlorophyll-A (based on trend estimates). 

 

Though such a graphical representation like this helps our understandings a little, we cannot adopt them as a 
scientific evidence of the existing of trend as it depends many tuning parameters and factors. To make things 
more formal, we have to resort to some formal testing procedure to validate the existence of trends. In the 
next section, we report the results of a couple of unit root tests applied for the trend series extracted from 
Chlorophyll-A data. 

3. UNIT ROOT TESTS 

3.1. Review of Procedures 

Unit root tests are originally developed in the context of econometric analysis of time series. main concern 
lies in the following question; trend in economic time series, is it a deterministic function of time or is it 
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essentially a stochastic trend characterized by, for example, a random walk model? We want to decide based 
on data, which necessitates formal statistical tests on the characteristics of time series.  

In other words, a deterministic trend model has a trend that increase or decrease at a fixed increment. If it is 
true, the trend part of the series can be predictable. On the other hand, if the trend is stochastic, it is 
impossible to tell to which direction the trend moves. As the prediction horizon becomes longer, the larger 
the prediction error bound becomes.  

At least in an economic sense, these two kinds of trends have different implication. However, we do not have 
to care the difference.  Whether deterministic or stochastic, we are more interested in the existence of trends 
than the nature of trends. 

3.2. Test Procedure 

In fact, we include a constant term and the linear time trend in a regression equation, and performed the 
following two kinds of tests.  

 Augmented Dickey-Fuller (ADF) Test 

 Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) Test    

We are going to make some brief remarks on the test procedure used here.  

The name ‘unit root test’ comes from the simple fact seen subsequently. Suppose that the time series ty  is 

truly generated by the following model, ttt yy ερ += −1  where tε  is i.i.d. ),0( 2σN  random variable. By 

introducing lag operator L  defined by 1−= tt yLy , the above model has an alternative expression 

.)1( ttyL ε=− Generally we can put the dependence structure of a time series into the corresponding 

polynomial of lag operator L . We investigate the behavior of time series model through the analysis of the 

polynomial associated with ty  (The expression for this example might be too simple for us to understood its 

meaningfulness). 

This associated polynomial is sometimes called the characteristic polynomial. If the solution to the equation 
setting the characteristic polynomial equal to zero lies just on the unit circle, the time series is said to follow a 
unit root process. Repeating simple backward substitutions, we obtain  


∞

=
−=

0j
jtty ε . 

Apparently, the time series ty  is expressed as the accumulation of independent noise. The term ‘stochastic 

trend’ comes from the right hand side of this expression.  

To determine whether or not time series has the stochastic trend usually rely on the estimates of the 
autoregressive parameters in a linear model. The tool to be employed for this aim is unit root test. Common 

specification is ttt yty ερδα +++= −1 , and we test the null hypothesis of 1=ρ . This is so-called 

Dickey-Fuller test (DF test hereafter), and an extended version where the serial correlation in the innovation 
process is allowed is referred to as the Augmented Dickey-Fuller test, ADF test hereafter. See Dickey and 
Fuller (1979, 1981). In our analysis, we confirm the existence of trend as long as δ  is significant even when 
ρ  is judged to be less than unity. Once again we do not care about the characteristic of trends. When the unit 

root hypothesis is accepted and at the same time δ  is significant, we have a deterministic trend plus a 
stochastic trend.  

In the ADF test, the null hypothesis is ‘unit root.’ To validate the test from another side, we also perform the 
test where the null of ‘no unit root’. One of such tests is so-called KPSS test proposed by Kwiatkowski, 
Phillips, Schmidt, and Shin (1992). The essential idea of KPSS test is as follows; if there is no stochastic 

trend, the innovation process of the stochastic trend must be degenerated. If we write this in a model, ty  has 

the following data generating structure,  

ttt uty +++= ηδα , 
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ttt uu ξ+= −1 , 

where tη  stands for a stationary process. It is apparent that the unobserved component tu  corresponds to the 

stochastic trend generated by the innovation process tξ . We test whether or not 02 =ξσ  where 2
ξσ  stands 

for the variance of tξ . When it is the case, the second equation results in a difference equation, and tu  is 

eventually absorbed into the constant term α .  

Once again, we do not care whether 02 =ξσ  or 02 >ξσ , even accept both. If 02 >ξσ , we confirmed the 

existence of a stochastic trend. Even if 02 =ξσ , we could validate the existence of a deterministic trend as 

long as the estimated δ  is significantly different from zero.  

We will close this subsection by mentioning a few remarks on the specification of tests. The lag length in 
ADF test is determined by AIC. The choice of kernel function in the estimation of spectral density in KPSS 
test is Bartlett kernel. This is the default setting in EViews. The bandwidth is chosen according to the Newey-
West automatic variable bandwidth selection, which is again the default in EViews. 

3.3. Results of Data Analysis 

In this subsection, we report the results on Chlorophyll-A series (Chl_a), a monthly time series observed 
from April 1979 to Mach 2003. We cannot determine in advance whether we should use the estimated trend 
only or to work on the seasonally adjusted series. In this paper, we report both results.  

Test results are reported only for 19 out of 46 monitoring locations. 
13 sites are chosen from the north lake, the rest from the south lake. 
(See Figure 3.) Every monitoring station is marked as P followed by 
a two digits number. To list the selected locations, P04, P05, P06, 
P07, P11, P12, P13, P17, P18, P19, P23, P24, P25 in the north, P36, 
P37, P38, P44, P45, P46 in the south.  

Table 1 shows the test results on trend estimates, while Table 2 for 
the seasonally adjusted series. In the table, the columns of ADF and 
KPSS report the values of test statistic, and their levels of marginal 
significance are indicated by asterisk(s): *** (1%), ** (5%), and * 
(10%). The column of ‘Trend’ reports the t-statistic of the estimated 
coefficient of linear trend.  

Generally speaking, we witnessed the existence of trend at almost 
every site. If we regard the estimated trend as data, the results often 
support the existence of deterministic trend. On the other hand, when 
we use the seasonally adjusted data, stochastic trend is supported in 
many cases.  

The reason is rather obvious. If we rely on the extracted trend only, 
sometimes we work on very smooth data. Then data does not contain much variability, and the deterministic 
time trend is sufficient to describe the time series data. Seasonally adjusted series, to the contrary, contains 
irregular part, so it becomes more difficult to separate the irregular part from trend. In such a case, stochastic 
trend is so flexible that it can show better fit to the data. It is conjectured that by this reason the stochastic 
trend is preferred for the seasonally adjusted data. What remains to be seen is which trend leads to the natural 
interpretation from the view point of environmental science.  

Some monitoring sites show the contradiction between the results of ADF test and KPSS test. P44 for the test 
based on trend (See Table 1), while P07, P18, P19, P23, P38, P44 for the test based on seasonally adjusted 
data (See Table 2). This is probably due to the effect of outliers, and it is difficult to demonstrate the 
existence of trend by just applying simple form of unit root test. This issue is also a future challenge. 

Figure 3. Location of 
monitoring sites. 
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Table 1: Trend series                              Table 2: Seasonally adjusted series 

 ADF Trend KPSS Trend ADF Trend KPSS Trend 

P4 -2.17 1.31 0.22*** -5.99*** -15.84*** -1.66* 0.04 -1.65* 

P5 -1.64 0.75 0.21** -4.43*** -13.72*** -1.04 0.08 -1.18 

P6 -3.22* -3.81*** 0.08 -18.42*** -7.84*** -1.94* 0.04 -2.42** 

P7 -2.10 -0.90 0.36*** -12.11*** -10.45*** -2.65*** 0.24*** -4.16*** 

P11 -3.18* -2.43** 0.08 -10.31*** -15.10*** -2.22** 0.05 -2.34** 

P12 -2.64 1.77* 0.18** 7.08*** -7.14*** 0.60 0.06 0.04 

P13 -2.21 -0.54 0.17** -5.17*** -14.74*** -1.12 0.07 -1.24 

P17 -2.24 1.05 0.19** 0.73 -13.57*** -0.74 0.05 -0.80 

P18 -2.49 -0.96 0.21** -14.30*** -12.94*** -2.38** 0.17** -3.10*** 

P19 -2.37 2.04** 0.33*** 0.27 -15.19*** -0.57 0.19** -0.62 

P23 -2.72 -1.05 0.19** -5.02*** -16.35 -1.69* 0.06 -1.71* 

P24 -3.21* -0.32 0.22*** -9.77*** -14.04 -1.34 0.04 -1.75* 

P25 -2.11 -0.92 0.17** -4.85*** -14.89*** -1.24 0.09 -1.48 

P36 -1.95 -2.13** 0.21** -12.44** -15.91*** -3.19*** 0.08 -3.46*** 

P37 -1.82 -1.05 0.23*** -15.78*** -15.48*** -2.43** 0.12 -2.56** 

P38 -3.18* -1.85* 0.28*** -31.50*** -14.36*** -5.62*** 0.23*** -7.27*** 

P44 -4.29*** -3.01*** 0.18** -22.83*** -11.64*** -2.71*** 0.15** -4.16*** 

P45 -1.98 -1.84* 0.36*** -19.75*** -11.01*** -3.19 0.10 -5.22*** 

P46 -1.82 -1.61 0.22*** -28.75*** -9.23*** -3.08*** 0.05 -4.31*** 
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