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Abstract: The MSM-BIGMOD model of the River Murray is a comprehensive flow and salinity routing 
model, used to assess the impacts of potential changes in river management on river flow and salinity levels. 
The modelling suite consists of a combination of two models (MSM and BIGMOD) that have been 
developed over a period of years. Sensitivity analysis of the model is particularly important, given that 
decisions are made about management of the River Murray based on outputs from the model. The large 
number of model inputs and parameters arising from the inclusion of the many tributaries, storages, drains, 
and diversions pose a challenge for traditional sensitivity analysis methods, such as one-at-a-time parameter 
perturbation methods. The Management Option Rank Equivalence (MORE) method of sensitivity analysis 
and the expanded Pareto Optimal Management Option Rank Equivalence (POMORE) are innovative 
methods of sensitivity analysis developed especially for use with complex models used for decision-making. 
The methods assess the sensitivity of management decisions based on model output, to changes in the model 
inputs, in order to provide a sensitivity analysis in the decision context. MORE searches the parameter space 
to find parameter combinations that result in an equal preference of two management options that are closest 
in Euclidean distance to the calibrated model parameters. POMORE searches similarly for parameter 
combinations that result in an equal preference of two management options; however, it uses a Pareto optimal 
search to determine the combinations which are the most similar to the original calibrated parameters. The 
difference in the search criteria, allows POMORE to find several solutions, allowing further categorisation of 
sensitivity throughout the parameter space. A sensitivity analysis of the MSM-BIGMOD model of the River 
Murray using MORE and POMORE is presented in this research. The analysis investigates the sensitivity of 
the decision to improve a salt interception scheme (SIS) based on the net present value of the savings due to a 
reduction in the salinity of water used for irrigation, domestic and industrial use, to changes in the cost 
parameters, the crop yield reduction parameters, and the salt removal parameters. The model is found to be 
reasonably robust, with a change of 37.5% of the maximum possible change in parameters required in order 
to alter the decision. However the sensitivity varies throughout the parameter space, indicated by a further 
30.2% change of the maximum possible, required to ensure that the decision will change. This variation in 
sensitivity throughout the parameter space, has shown that there is a need for further sensitivity analysis, and 
as such POMORE is used to gain additional information about other sensitive regions. This research 
demonstrates a comprehensive use of the MORE and POMORE methods of sensitivity analysis on a case 
study which poses considerable problems for traditional sensitivity analysis methods. The results obtained in 
the case study demonstrate the value of the MORE and POMORE approaches and the extremely useful 
information that they provide to decision-makers.  

Keywords: MORE, POMORE, sensitivity analysis, multi-objective optimization, decision-making, genetic 
algorithm, pareto dominance 
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1. INTRODUCTION 

Integrated assessment models (IAM) used to assist with decision-making are often highly complex systems, 
with multiple sources of uncertainty. Many parameters may be uncertain due to difficulties with data 
collection, natural variability, or poor system understanding. At the same time, decisions made based on 
model output are likely to have considerable financial or environmental impact. Sensitivity analysis provides 
a means of understanding how changes to model inputs and parameters, which may occur due to the 
uncertainty surrounding those parameters, will affect the model output. By determining which parameters the 
model output is most sensitive to, future research can be more appropriately directed towards determination 
of those parameters.  

Increased computing power in recent years has seen the increase in use of computer simulation models for 
environmental decision making, as well as rapid increases in their size and complexity. Integration of 
different models to determine outcomes in line with sustainability criteria further increases model size. Along 
with this, there is generally an increase in non-linearities and non-monotonicity within the model, as well as 
the presence of feedback loops, particularly in IAM. Thus model outputs may not be intuitive, creating a 
further need for reliable and informative sensitivity analysis. 

There are currently several different methods of sensitivity analysis in use. Well established techniques, such 
as Fourier Amplitude Sensitivity Testing (FAST) (Cukier et al. 1978; Saltelli et al. 1998), and the method of  
Sobol’ (Sobol' 1993, 2001), use analysis of variance to assess the contribution of the variance in a single 
parameter to the variance in the output, while methods such as Morris one-at-a-time factor screening (Morris 
1991) or the Improved Elementary Effects method (Campolongo et al. 2007), attempt to identify unimportant 
parameters such that further analysis can be simplified.  

The management option rank equivalence (MORE) (Ravalico et al. submitted) and Pareto optimal  
management option rank equivalence (POMORE) (Ravalico et al. 2009) methods of sensitivity analysis are 
new methods that have been developed specifically for use with IAMs used in decision-making. The methods 
take advantage of evolutionary optimization algorithms to locate the most sensitive areas of the parameter 
space, informing decision-makers of parameter combinations that may cause a change in the recommended 
management options, based on model output. The methods allow for model non-linearity and non-
monotonicity, as well as providing an efficient search through the use of evolutionary algorithms, which have 
been shown to outperform traditional mathematical approaches for complex problems (Elbeltagi et al. 2005) 

The MSM-BIGMOD modelling suite is a comprehensive flow and salinity model of the River Murray in 
South-Eastern Australia. The modeling suite is used to predict the effect of changes to river management on 
flow and salinity at various locations along the river. The modelling suite also comprises an economic 
component where the cost of increases or decreases in salinity is calculated based on crop yield reduction due 
to saline irrigation and increased costs associated with corrosion of water infrastructure due to salinity. The 
size of the model, as well as its integrated nature, make it an ideal test for the MORE and POMORE methods 
of sensitivity analysis. This research aims to demonstrate the efficacy of the MORE and POMORE methods 
of sensitivity analysis through application of the methods to the case study of the MSM-BIGMOD modelling 
suite.  

1.1. MORE Overview 

The MORE method of sensitivity analysis (Ravalico et al. submitted) can be considered a break even method 
of sensitivity analysis (Winterfeldt et al. 1986). The method is used for comparing decisions based on model 
output, and determining whether the decision that is being based on model output can be accurately made, 
given current parameter uncertainties. In a situation where management options are ranked, the parameter 
space is searched for the parameter combinations that cause equal ranking of different management options. 
These parameter combinations form a Rank-Equivalence Boundary, which is then searched for the 
combination which is closest in parameter space to the original or calibrated parameter vector used in the 
original assessment of the management options. This search can be a considerable task, particularly in the 
case where there are multiple parameters under question, increasing the dimensionality of the search space.  

The search can be considered as an optimization problem, where the distance from the original parameter 
vector, xA, to the surface where two management options give the same output, xB, needs to be minimized. In 
the case of large and complicated search spaces, evolutionary algorithms have been shown to outperform 
traditional mathematical optimization techniques, (Elbeltagi et al. 2005) and as such a genetic algorithm 
(GA) (Goldberg 1989) is used for the search. The distance between the minimum point and the original 

3209



Ravalico et al., MORE and POMORE sensitivity analysis of salt interception schemes in the River Murray 

 

calibrated parameters, Dmin, can then be used as the radius of a hyperspherical area, C, within which there is 
certainty that the preferred management option will not change. 

Finding the radius Dmin,, gives both a means of determining an area of parameter space where the preferred 
management option will not alter, as well an indication of the region of parameter space where the model is 
most sensitive to parameter changes. However, it gives little information about the sensitivity of other 
regions within parameter space. In order to determine whether the sensitivity changes considerably 
throughout parameter space, an optimization to find the point on the REB, xC, that is the maximum distance 
from the calibrated model parameters, xA,  and the corresponding distance between them, Dmax, is performed. 
This then allows categorization of the parameter space into three regions, the hyperspherical region, C, a 
region, U, which is bounded by C, and the hypersphere created with centre xA and radius Dmax, where we are 
uncertain whether the preferred management option will alter or not, and the remaining parameter space, S, 
where we are certain that the preferred management option will change. By calculating the relative volumes 
of these spheres it is possible to determine whether the choice of management option is sensitive to changes 
in the parameters, and whether the sensitivity changes considerably over the parameter space. Further 
distance measures rDmin and rDmax can be calculated by dividing Dmin and Dmax by the maximum distance 
from the calibrated parameter vector to the boundary of parameter space. The volume measures only provide 
useful information for problems with a small number of dimensions, due to the geometric properties of the 
hypersphere in high dimensions, however, in the case of high dimensionality, the distance measures Dmin, 
Dmax, rDmin  and rDmax can be used to assess both the sensitivity and the variation in sensitivity.  

1.2. POMORE Overview 

In the case that the sensitivity changes considerably through the parameter space, indicated by a large volume 
of U, or a large value of Dmax – Dmin,  it is important to be able to gain an overview of what may be several 
different locations in parameter space where there is high sensitivity to changes in model parameters. 
POMORE (Ravalico et al. 2009) uses a multi-objective Pareto optimization, rather than the single objective 
optimization used in MORE, in order to achieve this. A solution a is considered to be Pareto dominant over 
another solution b, if it is at least equal to b in all objectives, and better than b in at least one objective. Thus 
Pareto optimization finds a set of optimal solutions through a dominance relationship, where multiple 
potentially conflicting objectives are optimized simultaneously (Ringuest 1992). In this case we can consider 
the multiple objectives as the changes in the different parameters, and hence by minimizing all of these 
simultaneously, we can generate an approximate Pareto front, consisting of non-dominated Pareto solutions. 
The Pareto front can be constrained to the REB, such that it consists of several points along the REB that are 
minimal in their change from the original model parameters.  

Analysis of the Pareto optimal solutions enables the sensitivities of each of the parameters to be determined 
in conjunction with the smallest possible changes in all of the other parameters. Solutions corresponding to 
variation in a single parameter indicate the individual changes that are required to reach the REB. However, 
if there is joint parameter variation, the amount a given parameter has to change to reach the REB may be 
reduced or increased, depending on the joint effects of the parameter changes on the model output and the 
shape of the REB. By examining the statistical properties of the changes that are required to be made to a 
particular parameter to reach the REB, a true indication of the sensitivity of the decision to this parameter can 
be made, as sensitivity is considered in different directions of the parameter space and in conjunction with the 
minimal joint changes in all of the other parameters. In order to obtain this information for each parameter, 
only Pareto optimal solutions for which the parameter has the largest contribution are considered. 

The smallest changes in a parameter to reach the REB indicate higher sensitivity of the decision to that 
parameter. Therefore, when considering the range of maximum parameter changes in minimum solutions, the 
parameter that has consistently smaller changes can be considered more sensitive than parameters with 
consistently larger changes. The median parameter change can be used to assess the sensitivity of the 
decision to that parameter. The range of variation of a parameter also gives important information regarding 
the sensitivity of the decision. Where the range of a parameter varies greatly over the Pareto solutions for 
which it provides the greatest contribution, the sensitivity to that parameter can be seen to vary in different 
directions of parameter space, even through the set of minimal solutions. The most critical parameters will be 
those with a small range of variation in combination with a small median change. 
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2. CASE STUDY: UPGRADE OF SALT INTERCEPTION SCHEME IN THE LOWER RIVER 
MURRAY 

2.1. Model Outline 

The MSM-BIGMOD modelling suite is a comprehensive flow and salinity model of the River Murray in 
South-Eastern Australia. Beginning with the inflows from Dartmouth Dam, the model incorporates 
tributaries, storages, weirs, irrigation and urban diversions, salt interception schemes, drainage diversions, 
wetlands and flood runners (MDBC 2002). 

The modelling suite is a combination of five models: MSM, a monthly simulation model that computes 
irrigation demands, resources assessment and water accounting, MODFLW, which converts monthly values 
computed in MSM into daily input files for use in BIGMOD, GETDVM, which creates monthly inputs from 
MSM for BIGMOD, BIGMOD, which is a daily flow and salinity routing model from Hume Dam to Lake 
Alexandrina, and BIGARKW, which is used to analyse the results of MSM and BIGMOD. Of these, 
BIGMOD and MSM are the key calculation models, and can be run separately or sequentially using outputs 
from MSM as inputs to BIGMOD (MDBC 2002).  

Changes to the Murray River are assessed by running the model over a benchmark period from 1891 to 2000 
for flow modelling and 1975-2000 for salinity modelling, under current conditions, as well as under the 
proposed conditions. The flow and salinity outputs from the two different runs are compared to assess the 
impact that the proposed changes would have on the current condition of the river over a considerable period 
of time.  

Proposed changes to the management of the river, particularly in relation to addressing high salinity 
problems, are also assessed on the basis of net-present value, with a cost in dollars per EC unit per year, 
based on data from Allen (2004) and outputs from the BIGMOD modelling suite.  The reduction or increase 
in EC can then be equated to a financial cost, such that salinity management options can be implemented that 
maximise this value.  

The large number of inputs and parameters in the modelling suite, and their potential interactions, prohibits 
standard one-at-a-time parameter variation as a method of sensitivity analysis. Further, use of the model in 
decision-making and the importance of the decisions made, make MORE and POMORE sensitivity analysis 
an ideal option. The modelling suite also provides a perfect test case for use of MORE and POMORE 
sensitivity in integrated modelling, since it combines several individual models with different purposes in 
order to create an overall output.    

2.2. Analyses Conducted 

The management decision that is the subject of this sensitivity analysis case study is the choice between 
upgrading the salt interception scheme (SIS) at Waikerie to increase annual salt removal by 20% (MO1) and 
maintaining the current SIS without upgrade (MO2). All other SIS schemes within the river are modelled at 
their current operating level. The choice of management option is based on the net present value (NPV) of 
the upgrade. Using the calibrated model parameters the NPV of MO1 is found to be $4,609,470, while the 
NPV of MO2 is found to be $3,520,640. Hence, with the calibrated model parameters, MO1, improving the 
SIS would be the preferred management option. 

Three different groups of parameters were selected for the analysis. The first consisted of parameters that 
determine the salt removal at various flow levels for three SIS schemes of interest, one located at Noora, one 
at Waikerie and the other at Woolpunda, the second group of parameters governing the domestic urban and 
industrial costs due to salinity, and the third group of parameters governing yield reduction due to saline 
irrigation. The SIS parameter ranges are set as as [xi- 50, xi+50], where xi is the calibrated value of the 
parameter. The parameters governing the domestic, urban and industrial costs have the range [0, 0.8]. There 
are two different ranges considered for the agricultural parameters. For each crop grown in the region the 
yield reduction formula with 2 parameters, a and b is used to determine the reduction in yield. Parameter a is 
the threshold salinity, and b is the relative yield decline of the crop. For each crop, the range of a is [0 , 10] 
and the range of b is [1, 100]. 

For this analysis, the model was run for the period from April 1974 to May 2001 and the reaches of the 
BIGMOD model considered were between Lock 5 and Lock 1.  
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2.2.1 MORE Options 

As mentioned previously, a genetic algorithm (GA) was used to locate the minimum and maximum points on 
the REB, which is an evolutionary algorithm, based on Darwinian principles of survival of the fittest 
(Goldberg 1989). The objective function for the genetic algorithm is the Euclidean distance from xA to xB or 
xC, and the single constraint that the solution must lie on the REB. 

The fitness of each chromosome in a generation of the GA is based first on the amount that the constraint is 
violated, with those chromosomes with the smallest violation considered the fittest. For chromosomes 
without constraint violation, the distance is evaluated, and those with either the minimum or maximum 
distance (depending on which search is being performed) from the calibrated model parameter vector are 
considered the fittest. The GA is real coded, and uses the crossover method described by Gibbs et al. (2005), 
as well as incorporating elitism and string wise mutation with a probability of mutation of 0.5.  

In order to determine the most appropriate population size and number of generations, the GA was run with 
population sizes varying between 100 and 300, and a number of generations varying between 100 and 300 
while the random number seed was held constant, to ensure that any improvement in results was due to the 
changes in the GA parameters and not the random number seed. A population size of 200 was shown to 
converge in less than 200 generations, and provide good results, so these parameters were used for the 
analysis. 

2.2.2 POMORE Options 

The POMORE method was implemented using NSGA II (Deb et al. 2002). NSGA II is a multi-objective 
genetic algorithm, which searches for Pareto dominant solutions, and is known for its computational 
efficiency. In order to remain consistent with the MORE analysis, the decision variables for the GA are real 
coded. The probability of mutation was set at 1/k, where k is the number of parameters, as recommended by 
Deb (2000). The population size was selected to return a reasonable number of Pareto optimal solutions, 
while enabling a thorough search of the parameter space. The other parameters were obtained through 
repeated runs of NSGAII with the same random number seed and different combinations of the parameters. 
The population for the GA was set at 200, and run over 200 generations.  

3. RESULTS 

3.1. MORE Results 

The results of the MORE method are shown in Table 1. The results show quite a small rDmin value of 0.063, 
corresponding to a radius which takes up 6.3% of the possible maximum distance to the parameter space 
boundary. This indicates that the model is quite sensitive to changes in the model parameters. The rDmax 
value of 0.953 indicates that there is considerable variation in sensitivity throughout the parameter space, 
with some small changes in parameters causing a change in the preferred management, while some larger 
changes will not. 

The individual changes in parameters for the minimization are shown in Figure 1, while the individual 
changes in parameters for the maximization runs are shown in Figure 2. To allow a simpler visual 
comparison of the changes, they have been normalized by the parameter ranges.  

From the figures it can be seen that there is little relationship between the minimum changes and maximum 
changes in individual parameters, indicating that there is considerable parameter interaction. Given the 
variation in sensitivity throughout the parameter space indicated by the size of rDman – rDmin,, further analysis 
into the variation in sensitivity can be provided by POMORE if necessary. 

Table 1. MORE volume and distance measure results 

Distance Measures 

Dmin rDmin Dmax rDmax Dmax-Dmin rDmax-rDmin 

0.434 0.063 6.516 0.953 6.072 0.890 
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Figure 1. Individual parameter changes for minimisation. 
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Figure 2 Individual parameter changes for maximization. 

3.2. POMORE Results 

Figures 3 is indicative of the results that can be obtained for each parameter, provided that its change from its 
original value is the largest of all the normalized parameter changes for at least four of the Pareto dominant 
solutions found. Parameter 14 is the parameter used to determine the cost of salinity in water cooling towers 
outside of Adelaide. Figure 3 focuses on the instance where parameter 14 is the parameter with the greatest 
change, and shows the minimum, maximum and median changes in the other parameter values, as well as the 
first and third quartile values. Since the change in parameter 14 is considerably higher than all the other 
parameters, this parameter can be considered to have a major contribution to the change in model output, 
which allows the other parameters to change less than they would have otherwise, hence making the model 
more sensitive to the other parameters. In this case however, there is still a considerable variation in 
parameters 15 and above, which may indicate that a smaller change in one parameter is being offset by a 
larger change in another parameter. Parameters 1-9, which are related to the SIS schemes, show less variation 
than the other parameters, indicating that the model is more sensitive to these than it is to other parameters.  
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Figure 3. Variation of parameter changes where parameter 14 has the largest change.

4. CONCLUSIONS 

The sensitivity analysis showed that the sensitivity of a 20% improvement in a single SIS scheme was not 
highly sensitive to changes in the 77 selected model parameters. There was however a reasonable variation in 
the sensitivity across the parameter space, shown by (rDmax – rDmin), which justified the application of the 
POMORE method, in order to further quantify the regions of interest on the REB, as well as the variation in 
parameter changes required to reach the REB. The results showed that for cases where the change in a 
particular parameter dominated, changes in other parameters varied considerably, with the exception of the 
parameters for the SIS (parameters 1-9) which had less variation than the remaining parameters. 

The sensitivity analysis performed on the MSM-BIGMOD modeling suite demonstrates that the MORE and 
POMORE methods of sensitivity analysis are an effective method of analyzing the sensitivity of model 
output used to aid in decision-making. 
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