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Abstract: Salinity is recognised as a global land management issue and the use of appropriate models is 
vital for the management of salinity-affected areas. A major limitation associated with the modelling of salt 
and water transport is the heavy reliance on good quality data for model development. Measured salinity data 
are required for calibration of salt and water balance (SAWB) models; however these data are not available 
for ungauged catchments. Hence the determination of optimal salinity management strategies for these areas 
is difficult. A considerable amount of research has been conducted on the development of hydrological 
models for ungauged catchments; however a similar approach has not yet been developed for SAWB models. 
In this study Partial Mutual Information (PMI) is used to assess the strength of relationships between readily-
obtainable catchment characteristics and the parameters of a SAWB model. This will enable the future 
development of SAWB modelling for ungauged catchments by eliminating the traditional calibration 
requirement.  

In order to use the PMI to assess the strength of these relationships, a set of optimal SAWB model parameters 
and a set of catchment characteristics are required. The optimal set of model parameters is obtained by 
calibrating the model for 43 gauged catchments across Australia. CATSALT is chosen as the most 
appropriate SAWB model for this study due to its parsimony and reliability compared with other commonly 
available models. All of the inputs for CATSALT are obtained for the 43 catchments, which include values 
of average soil and groundwater salinity, streamflow and baseflow data. The Australian Water Balance 
Model (AWBM) is used to obtain the streamflow and baseflow data from measured total runoff data. 
Calibration of CATSALT for the 43catchments is performed using Differential Evolution, as this has been 
found to perform favourably compared with other calibration methods. Values for a set of 32 commonly 
available catchment characteristics are also obtained, including land use, vegetation and spatial attributes of 
the catchments.  

After obtaining the set of optimal SAWB model parameters by calibration and the set of catchment 
characteristics, the PMI algorithm is used. PMI is a technique for input variable selection that can detect 
linear and non-linear relationships between variables, as well as account for redundancy between variables. It 
is an improvement on traditional input selection methods, such as partial correlation analysis, which can only 
detect linear relationships between the variables.  

Using a bootstrapping procedure with 95% confidence limit as the stopping criterion for the PMI algorithm, 
six relevant and non-redundant catchment characteristics are found to have a significant relationship with 
each of the three CATSALT model parameters. This shows that there are relationships between easily 
obtainable catchment characteristics and the parameters of the CATSALT model. These catchment 
characteristics could be used in future research to develop models for the prediction of the CATSALT 
parameters, hence enabling CATSALT to be applied in ungauged catchments. This approach is not limited to 
the CATSALT model and could be applied effectively to other available SAWB models. 
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INTRODUCTION 

Salinity is a globally recognised land management issue. Within Australia alone, approximately 5.7 million 
hectares are considered to be affected by, or at risk of, dryland salinity (DEWHA, 2001). Environmental 
modelling can serve as a powerful tool for developing an understanding of environmental processes, and for 
determining appropriate management strategies, including those for salinity management (Gibbs et al., 
2008a). Environmental modelling relies on significant data inputs for model calibration and validation, but in 
cases of limited data this becomes difficult or even impossible. When little or no data are available for model 
calibration, a catchment is referred to as being ungauged.  

Many rainfall-runoff (RR) models have been adapted to allow for modelling in ungauged catchments through 
the use of regionalisation methods (e.g. Evans and Jakeman, 1998; Boughton and Chiew, 2007). 
Regionalisation approaches generally take on one of the following two forms: 1) models are calibrated to 
spatially close and similar gauged catchment(s) (Vandewiele and Elias, 1995) or 2) relationships between 
model parameters and catchment characteristics are developed (Gibbs et al., 2008b). The latter method has 
been widely used for estimating flows and has not yet been applied to salt and water balance (SAWB) 
models.  Consequently, such an approach has been adopted in this study. 

The selection of an appropriate set of catchment characteristics is imperative in the development of such 
relationships. In this study the Partial Mutual Information (PMI) algorithm (Sharma, 2000) is used to assess 
the strength of relationships between readily obtainable catchment characteristics and the parameters of 
SAWB model. This will enable the future development of SAWB modelling for ungauged catchments by 
eliminating the traditional calibration requirement. The following sections provide relevant background and 
an outline of the methodology. The results are then presented, followed by a discussion and concluding 
remarks. 

1. BACKGROUND 

Several RR models, such as the Australian Water Balance Model (AWBM), have been used to model runoff 
in ungauged catchments. Models such as these generally have a parsimonious structure - they require fewer 
inputs and parameters for model calibration than models of higher complexity (Littlewood et al., 2003). Thus 
they are ideal for regionalisation, as the number of relationships between model parameters and catchment 
characteristics are kept to a minimum. 

In order to develop an accurate relationship, a set of appropriate catchment characteristics must be chosen. 
The characteristics should form the smallest set able to adequately describe the behaviour of the system (May 
et al., 2008). If too many characteristics are included, the model becomes unnecessarily complicated and less 
accurate (Bowden et al., 2005). There are several traditional methods of input selection described by Bowden 
et al. (2005), including the use of a priori knowledge, trial and error and linear correlation techniques. 
However, these methods can be subjective or inaccurate, making it difficult to determine whether the 
optimum inputs have been chosen. 

An alternative input selection method uses the concept of mutual information (MI) and overcomes the 
limitations of linear approaches, particularly when applied to non-linear systems, such as those found in an 
environmental setting. MI is a measure that makes no prior assumptions about the structure of the 
dependence between the variables (May et al., 2008). As such, MI can determine both linear and non-linear 
relationships between variables. PMI is an extension to the concept of MI, which can directly account for 
redundancy in the inputs. PMI measures the additional dependence that each new potential input adds to the 
model, which means that if two potential inputs provide the same information about the output variable, only 
one will be chosen for the final input set (Bowden et al., 2005).  In this study, the PMI algorithm will be used 
to determine the strength of the relationship between easily measureable catchment characteristics and the 
parameters of a SAWB model. 

2. METHODOLOGY 

As mentioned above, the main aim of this study is to assess the strength of relationships between readily-
obtainable catchment characteristics and the parameters of a SAWB model. Obtaining these relationships 
enables SAWB model parameters to be predicted directly from limited catchment data, eliminating the 
traditional data-reliant calibration requirements, hence facilitating the future development of SAWB 
modelling for ungauged catchments. 

Figure 1 presents the generic procedure that was developed as part of this research to identify the required 
relationships. The most relevant catchment characteristics for each parameter of the SAWB model were 
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identified using the PMI algorithm (Box 12). This required the development of a RR model (Box 3) and a 
SAWB model (Box 8). The SAWB model was required to provide a set of optimised model parameters (Box 
10) so that the strength of relationships between the catchment characteristics and model parameters could be 
assessed (Box 12). The RR model provided the streamflow and baseflow data sets that were required as 
inputs to the SAWB model (Boxes 4 and 6). The strongest input variables were selected from an inventory of 
catchment characteristics (Box 11), which will enable the SAWB model to be applied to ungauged 
catchments.  

The method outlined in Figure 1 was executed in three main steps: 

• STEP A: Choice of an appropriate SAWB model and compilation of the input data required (Boxes 1 to 
6); 

• STEP B: Calibration of SAWB model parameters to obtain a set of optimal parameters (using temporal 
salinity records) (Boxes 7 – 9) and; 

• STEP C: Identification of the catchment characteristics that displayed the strongest relationship with each 
of the optimised salinity model parameters using the PMI algorithm (Boxes 10 – 12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1. STEP A: Compile data inputs for a salinity model 

In order to complete Step A, two main components were required, which were the choice of an appropriate 
SAWB model, and the compilation of the data required as input to the chosen model. 

Choice of a salt and water balance model 
A number of SAWB models were compared based on predictive capability and parsimony. These included 
LUCICAT (Bari et al., 2003), CATSALT (Tuteja et al., 2004), 2CSalt (Weeks et al., 2005) and BC2C 
(Gilfedder et al., 2005). Based on model accuracy, data requirements, dynamic or steady state model 
capabilities, output timesteps and salt mobilisation processes included, CATSALT was found to be the most 
appropriate model.   

The CATSALT SAWB model was originally developed to support the management of salinity-affected 
lands. It predicts runoff and its salinity for catchment-scale investigations of gauged catchments, and has 
been predominantly applied in NSW, Australia. CATSALT represents the physical processes of surface 
runoff, percolation and baseflow (Tuteja et al., 2004).  

CATSALT includes three modules, (i) Lumped conceptual rainfall runoff model, (ii) Runoff distribution 
component, and (iii) Salt mobilisation and runoff. Modules (i) and (ii) form a hydrological model called 
SMAR, which stands alone from the salt mobilisation component. The SMAR module provides outputs of 
streamflow and baseflow, which are required as inputs to the salt balance part of CATSALT (Box 4, Figure 
1). 

Figure 1: Methodology for identifying the strongest relationships. 

STEP A:  
Establish Data  
Inputs for  
Salinity model 

 

 

 

3. Rainfall- runoff model 

2. Rainfall- runoff  
model parameters

1 .Rainfall-runoff 
model inputs 

4. Rainfall runoff model outputs 
(baseflow & streamflow)

5. Average soil & 
groundwater salinity 

6. Salt and water transport model inputs 

STEP B:  
Calibration of  
Salinity model 

8. Salt and water transport model 7. Temporal 
salinity data

9. Calibration of Salt and water transport model 

STEP C:  
Input Variable  
Selection 

10. Optimum salt and water 
transport model parameters

11. Catchment 
characteristics 

12. Input variable selection using PMI 

3367



Coff et al., Relating catchment attributes to parameters of a salt and water balance model  

 

The CATSALT model can be run from within a spreadsheet program to predict the salinity exports in 
streamflow and baseflow from a catchment. The structure and limitations of CATSALT are described in 
detail in Tuteja et al. (2003). In CATSALT, a catchment is typically disaggregated into sub-catchment areas, 
based on wetness index and landuse type. This study assumes a single wetness index and landuse type over 
an entire catchment due to the data limitations associated with ungauged catchments.  

To apply CATSALT to an ungauged catchment, three salinity parameters needed to be estimated: α, β and 
KF. This was achieved by calibration of CATSALT using data from 43 gauged catchments from across 
Australia. α is a dimensionless parameter that controls the non-linearity of the desorption process between the 
soil and water; β represents hydraulic conductivity between the exchange of the aquifer and the river; and the 
Freundlich constant, KF, represents the salt exchange process between the soil and water (Tuteja et al., 2003). 

3.1.2 Input data for the salt and water balance model 
A total of 43 catchments were selected from all six Australian 
states based on data availability (Figure 2). The catchment 
area and stream salinities within the catchment ranged from 
52 – 1735 km2 and 0 – 45000 μs/cm, respectively.  Inputs 
required by the CATSALT model include continuous 
streamflow and baseflow runoff series, as well as soil and 
groundwater salinity values. A continuous salt load export 
series was also required for calibration of the CATSALT 
model parameters. All of the data were obtained from state 
government departments. 

To determine the streamflow and baseflow components from 
the total runoff data, AWBM was used. AWBM was selected 
over SMAR, which formed the hydrological component for 
the original version of CATSALT. This is because an 
ungauged version of AWBM (UGAWBM3) has been used previously in several studies, using inputs of 
rainfall and pan evaporation data (Boughton and Chiew, 2003; Boughton and Chiew, 2007). Consequently, 
AWBM’s Base-Flow Index (BFI) parameter was used to separate the total runoff into streamflow and 
baseflow components, as required for input into CATSALT. 

2.2. STEP B: Calibration of the salinity model  

In order to determine an optimal set of SAWB model parameters, CATSALT was calibrated to continuous 
daily stream salt load data for the 43 selected catchments using the Differential Evolution auto-calibration 
method (Storn and Price, 1997). This method was found to perform best in terms of speed and accuracy when 
compared to three other auto-calibration techniques: Genetic Algorithm, Simulated Annealing and MS Excel 
Solver (a gradient method) as part of a preliminary sensitivity analysis. The Root Mean Square Error was 
used as the objective function during the calibration of the parameters and the Nash-Sutcliffe Coefficient of 
Efficiency was used as the validation assessment criterion of the optimal parameters chosen for the 
catchments. Therefore, for each catchment, a set of optimal CATSALT model parameter values (α, β and KF) 
was obtained. 

2.3. STEP C: Identification of characteristics that have strong relationships with model parameters 

Two components were required in order to identify the catchment characteristics that displayed the strongest 
relationships with each of the optimised salinity model parameters. These were the establishment of a set of 
readily available catchment characteristics and the input variable selection process.  

Catchment characteristics 
The set of catchment characteristics used in the input selection process included a wide variety of 
geomorphological, climatological and biophysical characteristics (Box 11). The characteristics used in 
Boughton and Chiew (2003) for an ungauged hydrological approach were used, which include catchment 
area, annual rainfall, annual area potential evapotranspiration (APET), surface runoff, elevation, leaf area 
index, percentage of woody vegetation, plant-available water holding capacity (PAWHC) and soil 
transmissivity. A range of soil hydraulic properties and landuse data were also included, which are available 
for all areas in Australia from the LIZA and SHPA GIS data sets (Western and McKenzie, 2004; Western, 
2005). The characteristics came from several sources and were chosen so that they would be readily available 
for most catchments within Australia, to ensure that the approach could be used widely throughout the 

Figure 2. Location of selected catchments 
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country on ungauged catchments. Overall, 32 catchment characteristics were considered for use in the 
process of input variable selection. 

Input Variable Selection 
Input variable selection was undertaken with the aim of determining a set of relevant and non-redundant 
inputs from the set of catchment characteristics. The inputs were selected based on the strength of their 
relationship with each of the three CATSALT model parameters. This was done using Partial Mutual 
Information (PMI), which detects linear and non-linear relationships between variables, and accounts for 
redundancy between input variables (see May et al., 2008). PMI values range from 0 to infinity, with a high 
score indicating a strong dependence between the two variables (Sharma, 2000). The stopping criterion that 
was used for the PMI was a bootstrapping method with a 95% confidence limit. Such an approach is 
required, as critical values of MI cannot be obtained directly, as is the case with critical values of correlation 
(May et al., 2008).  

3. RESULTS 

Using the PMI input selection 
algorithm, it was found that six 
relevant and non-redundant 
catchment characteristics have a 
significant relationship with each 
of the three CATSALT model 
parameters. This shows that there 
are relationships between easily 
obtainable catchment 
characteristics and the parameters 
of the CATSALT model. Table 1 
shows the catchment characteristics that were selected for each CATSALT model parameter. Since the PMI 
values have shown that they have significant relationships with the CATSALT model parameters, the 
characteristics from Table 1 could be used in future studies as input variables for predictive CATSALT 
parameters models. 

The most highly related characteristic for the α parameter was PAWHC, which is the plant available water 
holding capacity (mm), which represents the water uptake by plants. Elevation 90-10% is the 90th percentile 
median elevation minus the 10th percentile median elevation. Pixel value is an overall soil classification based 
on the total set of attributes listed in the SHPA data set (Western and McKenzie, 2004), while the runoff 
coefficient is the mean annual runoff divided by mean annual rainfall. B_PERCENT represents the portion of 
the catchment recognised to have a B soil horizon (%) and MARainfall is the mean annual rainfall in the 
catchment (mm).  

For the β Parameter, the most relevant characteristic was B_FCP, which is the average volumetric water 
content of B-horizon soil at nominal field capacity (m3/m3). The surface runoff ratio is the ratio of the surface 
flow to the total runoff, and the area characteristic is the area of the catchment (km2). The % woody 
characteristic is an approximation of the percentage of woody vegetation in the catchment. Similar to the α 
parameter, Pixel value was chosen as a highly relevant characteristic, as well as the mean annual runoff from 
the catchment (mm).  

The most highly related characteristic for the KF CATSALT parameter was B_KSAT, which represents the 
weighted average of median B horizon saturated hydraulic conductivity (m3/m3). A_SAT is the averaged 
value of saturated volumetric water content for the A-horizon (m3/m3), while B_PAWHC represents the 
PAWHC in the B soil horizon (mm). B_SAT was also selected, which are the averaged values of saturated 
volumetric water content for the B-horizon (m3/m3). The SolPAWHC is the average solum (soil that is 
available to be exploited by plant roots) plant-available water holding capacity (mm), and represents the free-
water available in the soil profile (Western and McKenzie, 2004). Lastly, the Pixel value was also chosen as 
a relevant and non-redundant catchment characteristic for the KF parameter.  

Since measures of the mean annual runoff, runoff coefficient and surface runoff ratio are unlikely to be 
available in an ungauged catchment, these quantities would be estimated using Boughton and Chiew’s (2007) 
procedure. According to this procedure, average annual rainfall and areal potential evapotranspiration can be 
used in the ungauged AWBM to estimate the average annual runoff from the catchment. It was found that 
two thirds of the estimates of the average annual runoff were within ±25% of the actual value, which is only 

Table 1: Results from the PMI Input Selection Process 

α β KF 

Characteristic PMI Characteristic PMI Characteristic PMI 

PAWHC 0.225 B_FCP 0.195 B_KSAT 0.240 

Elevation 90-
10% 0.178 

Surface runoff 
Ratio 0.189 A_SAT 0.230 

Pixel value 0.168 Area 0.184 B_PAWHC 0.209 

Runoff Coeff  0.151 % woody 0.176 B_SAT 0.178 

B_PERCNT 0.143 Pixel value 0.151 SolPAWHC 0.150 

A i f ll A ff i l l
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slightly less accurate than estimates produced by the AWBM when it is calibrated directly against recorded 
runoff data. 

4. DISCUSSION AND LIMITATIONS 

The results of the PMI selection method were analyzed to identify whether the catchment characteristics that 
were selected as having significant relationships with each of the CATSALT parameters made physical 
sense. This was undertaken by using a priori knowledge to consider the relationships these CATSALT model 
parameters might have with catchment characteristics. Most of the chosen characteristics made physical 
sense, however, due to the limited prior knowledge of these relationships, the choice of some of the inputs 
could not be explained.  

The α parameter controls the non-linearity of the desorption process between the soil and water (Tuteja et al., 
2003), therefore it was expected that surface soil, rainfall or runoff characteristics would be chosen by the 
PMI algorithm. It is unsurprising that water uptake by plants (represented by PAWHC) was chosen as the 
top-ranking input for α, as it would logically influence the amount of rainfall that is converted to surface 
flow. The range of elevation (the second most significant input) reflects the steepness of catchment slopes, 
which influences infiltration and surface runoff potential (Coram and Beverly, 2003). The remaining 
significant inputs also relate to soil characteristics, rainfall and runoff and hence make physical sense.  

The β parameter represents the hydraulic conductivity between the exchange of the aquifer and the river 
(Tuteja et al., 2003). Catchment characteristics expected to influence net export of salt in groundwater should 
relate to the volume of water leaving the catchment (and hence volume of salts contained in water), and soil 
properties. Hence it is unsurprising that the surface runoff ratio, %woody and the MARunoff were chosen as 
significant characteristics. Transmissivity is an expected choice as well, however, was not found to have a 
significant relationship with the β parameter using the PMI analysis on the available data. 

KF represents the salt exchange process between the soil and water (Tuteja et al., 2003), therefore it was 
intuitively expected that the most relevant catchment characteristics would be soil or runoff related 
characteristics. Therefore it made sense that all characteristics that were chosen represent specific properties 
of the soil within each catchment.  

The major limitation of this study was the small set of data that was available for the input selection process. 
Greater certainty in the chosen characteristics would result from using a larger number of catchments in the 
study. The method is also limited to the case where soil and groundwater salinities are invariant in time, 
whereas they are likely to vary seasonally with variation in climatic conditions.  

5. CONCLUSIONS AND RECOMMENDATIONS 

Using the 95% confidence limit as the stopping criterion for the PMI algorithm, six relevant and non-
redundant catchment characteristics were found to have a significant relationship with each of the three 
CATSALT model parameters. This shows that there are relationships between easily obtainable catchment 
characteristics and the parameters of the CATSALT model.  

These catchment characteristics should be used in future research to develop models for the prediction of the 
CATSALT parameters, hence enabling CATSALT to be applied in ungauged catchments by eliminating the 
traditional calibration requirement. The potential applications of this study could assist in much-needed 
salinity prediction, prevention, management and planning in ungauged catchments across the globe. This 
approach is not limited to the CATSALT model and could be applied effectively to other available SAWB 
models.  
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