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Abstract: The role of performance indicators is to give an accurate indication of the fit between a model 
and the system being modelled. As all measurements have an associated uncertainty (determining the 
significance that should be given to the measurement), performance indicators should take into account 
uncertainties in the observed quantities being modelled as well as in the model predictions (due to 
uncertainties in inputs, both data and model parameters). In the presence of significant heteroscedasticity in 
the uncertainty in observed and modelled output of a system, failure to adequately account for variations in 
the uncertainties means that the objective function only gives a measure of how well the model fits the 
observations, not how well the model fits the system being modelled. Since in most cases, the interest lies in 
fitting the system response, it is vital that the objective function(s) be designed to account for any variations 
in the uncertainties.  

Most objective functions (e.g. those based on the sum of squared residuals) assume homoscedastic 
uncertainties. If model contribution to the variations in residuals can be ignored, then transformations (e.g. 
Box-Cox) can be used to remove (or at least significantly reduce) heteroscedasticity. An alternative which is 
more generally applicable is to explicitly represent the uncertainties in the observed and modelled values in 
the objective function. Previous work on this topic addressed the modifications to standard objective 
functions (Nash-Sutcliffe efficiency - NSE, Root Mean Square Error - RMSE, chi-squared, coefficient of 
determination) using the optimal weighted averaging approach. A Monte Carlo trial using synthetic data with 
known uncertainty in the rating curve shows that the modified NSE gives significantly lower uncertainty in 
the estimated parameter values compared to those derived using the standard NSE. 

In addition to the heteroscedasticity in the uncertainties, there may also be significant serial correlation in the 
uncertainties for different time steps as a result of the use of a rating curve in estimating the observed flows, 
and for modelled flows, the influence of system memory (propagation of input uncertainties through the 
model). This includes not only first-order serial correlation (correlation between the uncertainties of the 
values for neighbouring time steps), but also longer-term serial correlation induced through the uncertainty in 
the rating curve. The extent of the longer-term serial correlation will depend on the stability of the rating 
curve. Thus, the requirement for exploiting the long-term serial correlation is information on the uncertainty 
and stability in the rating curve, information which is not necessarily available at the current time. This 
requires a change in the way that streamflow databases are constructed. A modified form of the NSE has 
been proposed, and the effect of including first-order serial correlation tested against synthetic data. The 
result of a Monte Carlo trial shows significant reduction in parameter uncertainty when first-order serial 
correlation is included in the objective function. 
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1. INTRODUCTION 

Objective functions give a measure of the difference between observed and modelled values, and therefore 
can be used to both calibrate a model and test the performance under simulation. Most objective functions 
assume that the uncertainties in the observed and modelled values are homoscedastic (i.e. the uncertainty 
doesn’t vary through the data set). Unfortunately, the assumption is often not valid, and is certainty invalid 
for hydrological datasets. The result is that the commonly used objective functions; for example, Nash 
Sutcliffe Efficiency (NSE) and Root Mean Square Error (RMSE) are poor measures of a models 
performance. Analysis of the impact of heteroscedasticity in the uncertainties using the optimal combinations 
of observations (Aitken, 1935) shows that the significance given to each data point is proportional to the 
inverse of the uncertainty squared. That is, very high weight is given to the most uncertain data points – 
independently of whether the uncertainty is known (Croke, 2007; Croke et al. 2008). 

One approach for addressing the heteroscedasticity in the uncertainties is through the Box-Cox 
transformation (Box and Cox, 1964). This approach is based on the assumption that the scatter in the 
residuals (observed – modelled) is a good indicator of the uncertainties in the residuals. Providing this 
assumption is valid, this approach gives a very simple means of removing the heteroscedasticity, thereby 
ensuring that the objective functions give good measures of the model performance when the transformed 
values are used instead of the original values. 

However, if error in the model structure introduces scatter in the model residuals, or if over-parameterisation 
reduces the scatter, then while the Box-Cox transformation will give homoscedastic residuals, there may still 
be significant heteroscedasticity in the uncertainty of the residuals (i.e. the scatter in the residuals is not only 
due to uncertainty in observed and modelled values). This is a result of the scatter in the model residuals not 
necessarily being a good indicator of the uncertainty in the residuals as any contribution from the model 
structure (if this does not adequately represent the system being modelled) is not included in the uncertainty 
in the modelled flows. This limits the effectiveness of the Box-Cox transformation to applications of 
parsimonious models which can be shown to have the correct structure. For other models, another approach 
is needed. 

Sorooshian and Dracup (1980) proposed an objective function (Homoscedastic Maximum Likelihood 
Estimator - HMLE) which attempts to account for the uncertainty in the residuals, and is very similar in form 
to the modified NSE proposed by Croke (2007). In using the HMLE, the estimation of the uncertainties is 
usually done by assuming some relationship between the uncertainty and the observed values (e.g. a power 
law). The effectiveness of this approach depends on how accurately the assumed functional form matches the 
heteroscedasticity in the uncertainty of the residuals, and the accuracy in the fitted coefficients of that 
functional form (if the coefficients are estimated based on model residuals, then comments for Box-Cox 
transformation also apply here). Hill and Tiedeman (2007) give a detailed analysis of calibration of 
groundwater models, including derivation of weights based on the uncertainties. 

In the case of observed stream flow, the uncertainty in the flow values depends primarily on the uncertainty 
in the rating curve (and to a lesser extent on the uncertainty in the measurement of the river level). The 
uncertainty in the rating curve results from uncertainty in the form of the functions used to fit the observed 
data, the discharge and stage measurement error during gauging, and potentially unaccounted drivers (e.g. the 
possible influence due to rate of change in stage on discharge). This paper will focus on the impact of 
uncertainty in the rating curve on the estimated streamflow, and consequently on the measurement of model 
performance. In the comparison of observed and modelled flows, it is also important to consider the 
uncertainty in the modelled values. This depends on the uncertainty in the model inputs and the model 
parameters. Uncertainty in the model structure (i.e. whether the model structure is appropriate) is not 
considered in the calculation of the performance indicator. Rather, this component of model uncertainty 
should be reflected in the value of the performance indicator (poor values indicate that the model structure 
could be improved). The expressions developed in this paper involve the uncertainty in both the observed and 
modelled values, though the synthetic examples given are focused on the uncertainty in the observed values. 

2. GLOSSARY OF SYMBOLS AND TERMS 

2.1. Terms 

true value 
the actual value (by definition unknown) that is being measured or calculated 
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uncertainty in a measurement or calculation 
probability distribution of the true value. Multiple observations can be used to give an estimate of the random 
component of the uncertainty, but no information regarding any systematic error will be obtained. 
Consequently, the uncertainty derived from multiple observations is a lower limit to the uncertainty in the 
measurement. Uncertainty is represented by a leading Δ (e.g. Δx is the uncertainty in x). 

error in a measurement or calculation 
difference between the measured/calculated value and the true value 

2.2. Symbols 

• R2: Nash Sutcliffe Efficiency 
• qo,i: observed flow at time step i 
• qm,i: modelled flow at time step i 
• oq : mean observed flow 

• do,i,j: qo,i - qo,j, 
• dm,i,j: qm,i - qm,j 
• ωi: weight applied to flow residual for time step i 
• ωs,i,j: weight applied to numerator of long-term serial correlation term between time steps i and j 
• λi: weight applied to observed flow for time step i 
• λs,i,j: weight applied to denominator of long-term serial correlation term between time steps i and j 
• si: significance (subjective) given to time step i 

3. EXISTING OBJECTIVE FUNCTIONS 

The Nash Sutcliffe Efficiency (NSE) is the most commonly used objective function in hydrology. 
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Using an optimal weighted average approach (Aitken, 1935), the NSE (and other objective functions) can be 
modified to account for uncertainties in modelled and observed values (Croke, 2007) 
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where the weights ωi and λi are obtained from the estimated uncertainties in the modelled (Δqm,i ) and 
observed (Δqo,i ) flows: 

( ) ( )[ ] ( )222 11 ioiimioi qqq ,,, , Δ=Δ+Δ= λω   

and si is the significance given to each time step. Comparison of Eqns 1 and 2 show that the NSE: 

• assumes negligible uncertainty in modelled values 

• significance (si) given to each time step is proportional to the square of the uncertainty in the 
observed flow (significance is uniform across all time steps only if the uncertainty is 
homoscedastic). 

4. SERIAL CORRELATION 

Standard objective functions (e.g. NSE, RMSE) simply compare each observed and modelled value, 
producing an aggregated signal from the entire dataset. That is, they ignore serial correlation in the data. 
However, due to the use of a rating curve to derive the observed streamflow estimates, there is significant 
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serial correlation in the observed flows and their associated uncertainty, not just between neighbouring time 
steps, but on much longer scales. The limit on the separation between any two observations in terms of the 

serial correlation between them is 
determined by the stability of the rating 
curve. 

Figures 1 and 2 show the impact of first-
order serial correlation (serial 
correlation between nearest neighbours) 
on the uncertainties in observed 
streamflow measurements. Synthetic 
streamflow “data” have been generated, 
using a power law form of rating curve 
[Q = a (h-h0)

b] , and including a 10% 
uncertainty (uniform distribution) in a 
and b. Figure 1 shows the uncertainty 
for each timestep, while Figure 2 shows 
the uncertainty in the flow assuming that 
the previous flow value is accurate (thus 
representing the error in the slope of the 
hydrograph). The significantly lower 
uncertainty in the relative flow (flow 
with respect to the flow for the previous 
time step) shows that there is a 
significant amount of information in the 
data that the standard objective functions 
do not exploit. 

A synthetic time series of data was 
generated using the IHACRES rainfall-
runoff model, with the uncertainty in the 
synthetic data being introduced by 
perturbing an assumed rating curve of the form described above, with an uncertainty in b of 10%, and a 5mm 
uncertainty in h. The a parameter is ignored as this is a trivial case when applied to the IHACRES model as 
the uncertainty in a will map linearly to the c parameter (mass balance term) in IHACRES. Similarly, the 
uncertainty in the parameter h0 is also not considered. The impact of the modified NSE on the calibration of 

Figure 2: Observed flow, with uncertainty 
bounds in pink (Uncertainty bounds assuming 
previous time step error free – i.e. showing the 

significantly reduced uncertainty in the local slope 
of the hydrograph compared with the uncertainty 

in the flow in Figure 1) 

Figure 1: Observed flow, with uncertainty bounds 
in pink (uncertainty based on 10% error in 

exponent (b) and coefficient (a) of rating curve) 

Figure 3. Calibrated parameter values for a Monte Carlo 
experiment on the impact of rating curve uncertainty on 

model parameters 
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two of the IHACRES model parameters is shown in Figure 3. Clearly, the modified NSE results in a 
significant decrease in the uncertainty in the estimated parameter values. 

4.1. Short-range autocorrelation 

The short-range autocorrelation (serial correlation between adjacent time steps, or first-order serial 
correlation) in uncertainty can be handled by comparing the rate of change (or slope) of the observed and 
modelled values. Bai et al. (2009) used a slope-based version of the NSE as one criterion in a multi-criteria 
calibration and testing of models. This can easily be achieved by using the change in value compared with 
the previous time step. The influence of short-range autocorrelation can be combined with the weighted NSE 
(Eqn 2) to give: 
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and (qo,1-qo,n)/n is the mean value of do,i,i-1. The uncertainty in the value of do,i,i-1 cannot be calculated from the 
uncertainties in the two flow values qo,i and qo,i-1. Rather, the uncertainty is obtained by considering the 
uncertainty in the rating curve. Ignoring correlation between the rating curve’s parameter values, we get 
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Similarly, for the modelled flow, the uncertainty in the slope cannot be derived from the uncertainty in the 
two modelled flow values, but must be calculated independently, taking into consideration the propagation of 
uncertainty through the model, and the influence of the system memory.  

The objective function could also be formulated as a separate term added to eqn (2) 
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Note that in both forms, the relative weighting between the value and slope terms is automatically handled by 
uncertainty in the observed and modelled values/slopes. The adopted form used here is that of equation 3.  

Figure 4 shows the impact of including the short-term serial correlation on the calibrated model parameters. 
For both parameters, there is a significant decrease in the uncertainty in the estimated values when the first-
order serial correlation is included in the objective function. 

 

3376



Croke, Representing uncertainty in objective functions 

4.2. Long-term autocorrelation 

There can also be long-term autocorrelation (correlation between data points more than 1 timestep apart) in 
the uncertainty in the observed data. An example is streamflow data, where the observation of the water level 
is converted into a discharge using a rating curve (mostly empirically derived). Providing that the rating 
curve is stable over the period in question, then the relative uncertainty of 2 observations with comparable 
flow depths is significantly smaller than the uncertainty in either observation. This means that there is 
additional information in the data that can be exploited to assess the model’s performance, potentially leading 
to better discrimination between models, and more accurate estimation of model parameter values. Extending 
equation (3) to account for long-term autocorrelation where the rating curve is stable over the entire period 
leads to: 
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This means that not only is the uncertainty in the rating curve needed, but also information on the stability of 
the rating curve. This additional information should result in a more stringent test of a models performance, 
and hence better model parameters and discrimination between models. 

5. APPLICATION OF MODIFIED NSE 

The calculation of the weights in the modified NSE can vary between calibration and simulation, depending 
on the calibration technique used. In simulation, the uncertainties in the model input data and parameter 
values each contribute to the uncertainty in the modelled output. Uncertainty due to how well the model 
structure represents the system being modelled is not considered in calculating the weights. Strictly speaking, 
there is no uncertainty in the model structure, unless there are coding errors present. Rather, this aspect of 
model uncertainty is reflected in the value of the objective function (a poor model structure should result in a 
poor result from the objective function).  

Figure 4. Calibrated parameter values when first-order serial 
correlation is taken into account
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Most calibration techniques involve testing the model performance for a given set of parameter values, and 
on the basis of the results, attempting to find either a local or global minimum. Consequently, there is no 
uncertainty in the model parameter values used in this process, and so the uncertainty in the modelled values 
is derived from the uncertainties in the input data only. If during the calibration process, the parameter values 
are estimated rather than set (e.g. when using the Simple Refined Instrumental Variable algorithm in 
IHACRES, the parameter values of the linear module are estimated for a given set of values for the non-
linear module parameters), then the uncertainty in the estimated parameter values needs to be considered. 
Note that the resulting error accumulation may limit the usefulness of the long-term serial correlation in the 
observed data. 

6. CONCLUSIONS 

Most objective functions compare observed and modelled values under the assumption of homoscedastic 
uncertainties, and negligible serial correlation. Both these conditions are not met when modelling streamflow 
(and in many other circumstances) due to the use of a rating curve to estimate the observed streamflow, and 
the influence of system memory. Where there is significant variation in the uncertainties through a dataset, 
the variation in the uncertainty needs to be taken into account when measuring model performance. Since the 
uncertainty estimates are being used in calculating the value of the objective function, the accuracy of the 
uncertainty estimate can influence the result. Depending on the type of performance indicator being used, this 
may require just the relative uncertainty (magnitude of uncertainty may not be known, but the variability 
needs to be known), though some indicators may need the absolute uncertainty. 

Further improvements in the ability of an objective function to discriminate between good and poor models 
can be made by considering the influence of serial correlation where this is significant. This may include just 
first-order serial correlation (correlation between nearest neighbours), or in some cases (e.g. rainfall-runoff 
models) can include longer-term serial correlation (correlation between well separated observations). In the 
case of rainfall-runoff models, this requires information on the stability of the rating curve through time, as 
well as the uncertainty in the fitted rating curve. 

REFERENCES 

Aitken, A.C. (1935), On Least Squares and Linear Combination of Observations, Proceedings of the Royal 
Society of Edinburgh, 55, 42-48. 

Bai, Y., Wagener, T. and Reed, P. (2009), A top-down framework for watershed model evaluation and 
selection under uncertainty, Environmental Modelling and Software, doi:10.1016/j.envsoft.2008.12.012. 

Box, G. E. P., and Cox, D.R. (1964), An analysis of transformations, Journal of Royal Statistical Society, 
Series B, 26, 211-246.  

Croke, B.F.W. (2007), The role of uncertainty in design of objective functions, In Oxley, L. and Kulasiri, D. 
(eds) MODSIM 2007 International Congress on Modelling and Simulation. Modelling and Simulation 
Society of Australia and New Zealand, December 2007, ISBN: 978-0-9758400-4-7, 2541-2547, 2007. 

Croke, B., Wagener, T., Post, D., Freer, J. and Littlewood, I. (2008), Evaluating the information content of 
data for uncertainty reduction in hydrological modelling, Position paper for Workshop 2, iEMSs2008. In 
Miquel Sànchez-Marrè, Javier Béjar, Joaquim Comas, Andrea E. Rizzoli, Giorgio Guariso (Eds.) 
Proceedings of the iEMSs Fourth Biennial Meeting: International Congress on Environmental Modelling 
and Software (iEMSs 2008). International Environmental Modelling and Software Society, Barcelona, 
Catalonia, July 2008. ISBN: 978-84-7653-074-0, Vol 3, pp1912-1926. 

Hill, M.C. and Tiedeman, C.R., (2007), Effective Groundwater Model Calibration, With Analysis of Data, 
Sensitivities, Predictions, and Uncertainty, Wiley-Interscience, 455pp, ISBN 0470041072, 
9780470041079. 

Sorooshian, S., and Dracup, J.A. (1980), Stochastic Parameter Estimation Procedures for Hydrological 
Rainfall-Runoff Models: Correlated and Heteroscedastic Error Cases, Water Resources Research, 16 (2), 
430-442. 

 
 

3378




