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Abstract: Some modellers routinely calibrate their models using an objective function that that consists 
solely of some measure of error minimisation at the daily or monthly time step.  Such a function might be 
based on maximising the Nash-Sutcliffe efficiency or the correlation coefficient or by minimising the root 
mean square error.  Other modellers routinely incorporate a bias constraint into their objective function.  
There are a number of ways of incorporating a bias constraint.  One way is to accept a calibration only if the 
difference in total streamflow between observation and prediction is less than some prescribed limit.  
Typically, this limit might be expressed as a percentage of the total observed streamflow.  In this paper we 
examine whether the choice of calibration method—using a bias constraint or not—has an effect on the 
subsequent use of the calibrated parameter sets to regionalise predictions to ungauged catchments.  We 
calibrate five lumped rainfall-runoff models—AWBM, IHACRES, Sacramento, Simhyd and SMAR-G—to 
89 gauged catchments in Tasmania ranging in size from 10 to 3500 km2.  Three separate calibration runs are 
done for each model.  In one, the objective function is based on the daily Nash-Sutcliffe efficiency alone; in 
the second, we augment the Nash-Sutcliffe efficiency with a severe bias constraint that attempts to ensure 
that the total predicted streamflow is within 5 % of the total observed streamflow (the bucket constraint); and 
in the third, we combine a smooth, less severe bias constraint (the log-bias constraint) along with efficiency 
into the objective function.  As expected, overall efficiencies tend to be larger for the unconstrained 
calibrations, while overall absolute biases tend to be smaller for the constrained calibrations. 

We then simulate each of the 89 catchments using parameters calibrated for the nearest neighbouring gauged 
catchment (cross-verification) and again assess prediction efficiency and bias.  The results show that the 
regionalised predictions using parameters derived from constrained calibrations tend to have lower absolute 
biases than those using parameters derived from unconstrained calibrations.  Regionalised model efficiencies 
tend to be greater for the unconstrained case than for the constrained cases, but the differences are slight.  
The smooth log-bias constraint is shown to provide cross-verification predictions with efficiencies almost 
indistinguishable from those for the unconstrained case and with biases at least as good as those of the more 
severe constraint.  Furthermore, this constraint does not suffer from the numerical issues that can affect 
predictions using the non-continuously differentiable bucket constraint.  These results provide support for 
incorporating bias constraints into calibration routines when model parameters are subsequently used for 
prediction in ungauged basins.  In particular, the use of a smoother constraint, like the log-bias constraint, is 
recommended.  
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1. INTRODUCTION 

All conceptual rainfall-runoff models have unknown parameters which require calibration using an observed 
sequence of streamflow.  Calibration inevitably involves some form of compromise.  Often this compromise 
might revolve around choosing whether to emphasise particular parts of the hydrograph above others (e.g., 
fitting peak flows at the expense of low flow prediction accuracy).  In a multi-response calibration, the 
compromise may involve trading prediction accuracy in one response in order to improve accuracy in 
another.  Usually, the modeller will have available a variety of levers to facilitate weighting of the different 
aspects of the predictions.  The use of these levers will largely be dictated by the nature of the modelling 
application.   

Some modellers routinely calibrate their models using an objective function that that consists solely of some 
measure of error variance minimisation at the daily or monthly time step.  Such a function might be based on 
maximising the Nash-Sutcliffe efficiency or the correlation coefficient or by minimising the root mean square 
error.  Other modellers (e.g., Madsen et al., 2002, Chiew et al., 2009) incorporate a bias constraint into their 
objective function.  There are a number of ways of incorporating a bias constraint.  One way is to accept a 
calibration only if the difference in total streamflow between observation and prediction is less than some 
prescribed limit.  Typically, this limit might be expressed as a percentage of the total observed streamflow.   

In this application, we consider the need to obtain predictions with good efficiency and bias.  Although these 
two measures are not entirely independent—it is difficult, for example, to obtain a calibration with extremely 
high efficiency and extremely poor bias—calibrating to both measures does include a degree of compromise.  
Furthermore, here we are not so much interested in the calibration quality as in the quality of the regionalised 
predictions that could be obtained as a result of the calibration.   

2. STUDY AREA AND DATA 

This study uses observed streamflow data from 89 gauged 
catchments in Tasmania, Australia (Figure 1).  All the 
catchments have areas of greater than 10 km2 and have 
streamflow records that are at least 30 % complete during 
the period 1975 to 2007.  All available gauged catchments 
in the study area that meet these criteria have been chosen.  
Throughout Tasmania, mean annual precipitation varies 
from less than 550 mm in the southeast to more than 3400 
mm in the west, and is winter-dominated.  For the 89 study 
catchments, mean annual streamflow varies from 20 mm to 
more than 2400 mm, and runoff coefficients range from less 
than 4 % to more than 90 %.  

Daily rainfall input data is obtained from the Silo Data Drill 
(Jeffrey et al., 2001), a data set gridded at a 0.05° (~5 km) 
spacing.  The Data Drill rainfall data is interpolated from 
point observations of daily rainfall.  Areal potential 
evaporation data is also derived from the Data Drill.  

About half of the catchments are natural forested catchments 
while the remainder are agricultural (grazing and cropping).  
Some streamflows are affected to fairly minor degrees by 
impoundment or by irrigation withdrawal.  Where possible, 
the streamflow data for these catchments has been augmented by engineers at Hydro Tasmania Consulting to 
reflect pre-extraction flows.  Most are stand-alone catchments, but for others there are up to three levels of 
nesting. 

3. METHODOLOGY 

3.1. The rainfall-runoff models 

Five lumped, conceptual rainfall-runoff models are calibrated separately on each of the 89 catchments: 
AWBM (Boughton, 2004), IHACRES (Croke et al., 2006), Sacramento (Burnash et al., 1973), Simhyd 
(Chiew et al., 2002) and SMAR-G (Goswami et al., 2002).  All models have previously been applied widely 
in runoff modelling.  In this study, six model parameters are optimised for Simhyd, including one parameter 

Figure 1. Location of study catchments. 

3422



Viney et al., The usefulness of bias constraints in model calibration for regionalisation to ungauged 
catchments 

in a Muskingum routing algorithm (Tan et al., 2005).  For the implementation of the remaining models, we 
optimise six parameters for AWBM, seven for IHACRES, 13 for Sacramento and eight for SMAR-G. 

Each model is operated using the gridded rainfall and potential evaporation data in 0.05° x 0.05° grid cells 
across each catchment.  For calibration, the observed runoff at the catchment outlet is compared with a 
spatial average of the modelled runoff in each grid cell within the catchment. 

3.2. Calibration 

Calibration is achieved through a sequential combination of the shuffled complex evolution algorithm and 
Rosenbrock methods.  Tests of this procedure (not reported here) have shown it to provide reproducible 
results for the five models.  Three objective functions are used.  In one case––here termed the unconstrained 
case—the objective function is the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970) of the daily runoff 
predictions.  In the second approach, the objective function is also based on daily model efficiency.  
However, in this case—which we call the bucket case—a penalty is applied for any prediction whose overall 
bias (total model error divided by total observed streamflow) is greater than 5 %, with the penalty being 
proportional to the deviation beyond 5 % (Figure 2a).  The objective function is given by subtracting the 
penalty from the efficiency.  The third approach––which we call the log-bias case—uses an objective 
function that is a weighted combination of efficiency and a logarithmic function of bias given by 

F = ENS  – 5 | ln(1 + B) |2.5 

where ENS is the Nash-Sutcliffe efficiency and B is the bias.  The form of the log-bias constraint is shown in 
Figure 2b.  The coefficients of this equation control the severity and shape of the resulting constraint penalty. 

Whereas the bucket constraint is additively 
symmetrical (a 50 % underprediction is 
penalised the same as a 50 % overprediction), 
the log-bias constraint is multiplicatively 
symmetrical (a prediction volume that is twice 
the observation volume is penalised the same as 
a prediction volume that is half the observation 
volume).  Note that the bucket constraint, as 
used by Chiew et al. (2009), is much more 
severe than the log-bias constraint.  In Figure 2 
it can be seen that a bias of –0.5 leads to a 
bucket penalty that is 450 times that of the log-
bias constraint, while a bias of +1.0 leads to a 
bucket penalty that is 950 times that of the log-
bias constraint. 

Thus, these three calibration procedures can 
yield three separate and possibly different sets 
of optimised model parameters for each model. 

3.3. Cross-verification 

Each of the 89 catchments is simulated using donor parameters from the nearest, non-nested catchment of the 
remaining 88 (together with local climate input).  The results of this cross-verification are assessed during the 
same period (1975–2007) as is used for calibration.  The assessment criteria for cross-verification are the 
same as those used in calibration: efficiency and bias. 

4. RESULTS 

4.1. Calibration 

The differences in calibration statistics between the three constraints are illustrated using the results for 
SMAR-G (Figure 3) for the 89 catchments.  Not surprisingly, the best efficiencies are obtained for the 
objective function that maximizes efficiency only and has no bias constraint.  The poorest efficiencies––
especially for the poorly calibrated catchments––are generated using the most severe bias constraint: the 
bucket constraint.  In general, the calibration efficiencies of the log-bias constraint are similar, but slightly 
inferior to those with no constraint. 

Figure 2.  Graphical representation of the calibration 
penalties for a) the bucket constraint and b) the log-bias 

constraint. 
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Figure 4.  Cumulative probability plots of a) calibration efficiency and b) calibration bias for 
the SMAR-G model calibrated using three different objective functions. 
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Figure 3.  Box plots of a) calibration efficiency and b) bias for the five models for no constraint 
(black), bucket constraint (blue) and log-bias constraint (red).  The boxes indicates the 25th, 50th and 

75th percentiles, the whiskers indicate the 10th and 90th percentiles, and the dots indicate the extrema.
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In contrast, the bucket constraint yields calibrations with the best bias characteristics.  For SMAR-G, almost 
all catchments are calibrated with absolute biases of less than 5 %.  However, despite the severity of this 
constraint, several catchments still have calibration biases outside these limits.  In other words, the optimiser 
was unable to find a parameter set that yielded predictions within the bias limits.  Furthermore, most of the 
bucket constraint biases that satisfy the limit fall right on the limit, at either –0.05 or +0.05, with relatively 
few occurring at intermediate biases.  In comparison, the log-bias constraint yields fewer catchments with 
absolute biases of less than or equal to 5 %, but far more with absolute biases that are distinctly less than 5 %.  
The biases for the objective function with no constraint show far greater scatter and few fall within 5 %. 

Broadly similar patterns are seen for the other four models (Figure 4), with the no constraint case having the 
best efficiencies (followed closely by the log-bias case) and the worst biases.  The Sacramento model’s 
calibration efficiencies for the bucket constraint are conspicuously poorer than those for other models or 
objective functions.  Only for IHACRES are all 89 catchments calibrated within the 5 % bias limit for the 
bucket constraint, although the same is also true for the IHACRES log-bias calibration.  While all three 
objective functions tend to slightly favour underprediction, this trend is most evident in the no constraint 
case, for which the median calibration biases are less than –0.05 for all models except IHACRES. 

4.2. Cross-verification 

Prediction statistics for both efficiency and bias are significantly poorer for cross-verification than for 
calibration.  Whereas the median calibration efficiencies for the three objective functions for SMAR-G are 
between 0.76 and 0.78, the median cross-verification efficiencies fall to 0.60–0.62.  The SMAR-G 
efficiencies for the unconstrained case retain their slight advantage over those of the log-bias constraint 
(Figure 5).  In terms of cross-verification bias, there is little difference between the bucket and log-bias 
constraints.  The unconstrained case continues to show a strong tendency towards underprediction and has a 
larger median absolute bias (0.21) than the two constrained cases (0.15). 

As is the case for calibration, the cross-verification statistics for the other four models show similar trends to 
those of SMAR-G.  The bucket constraint yields slightly poorer efficiencies in the poorly calibrated 
catchments, while there is little to separate the efficiencies of the other two objective functions (Figure 6a).  
The unconstrained case tends towards underprediction and has poorer median biases (Figure 6b), and—apart 
from IHACRES—has greater median absolute biases than the other two constraints. 
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Figure 5.  Cumulative probability plots of a) cross-verification efficiency and b) cross-
verification bias for the SMAR-G model calibrated using three different objective functions. 
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5. DISCUSSION 

In the calibrations depicted in Figures 3 and 4, the best efficiencies are associated with the objective function 
that considers only efficiency, but its bias statistics are relatively poor.  In contrast, the objective function 
with the most severe bias constraint has the best biases but the worst efficiencies.  The log-bias constraint 
appears to provide a good compromise in that its efficiencies are almost as good as those of the unconstrained 
case and its biases are almost as good as those of the bucket constraint.  However, more research is needed to 
elucidate whether this is a consequence of the relative severity of the constraints or of the functional form of 
the bias penalty.   

One observation that points to the latter is that with the bucket constraint, most catchments have calibration 
biases that are exactly at the point where the bias penalty cuts in (–5 % or +5 %).  It appears that during the 
calibration process, the optimum calibration evolves towards the constraint limit (from outside the limits).  
However, when it reaches the point where the penalty disappears, it becomes stuck and is unable to evolve 
further towards zero bias.  This blockage occurs despite the fact that there are known parameter sets with 
better efficiencies and lower absolute biases—as evidenced by the outcomes of the log-bias constraint.  It 
occurs in less than 20 % of catchments for IHACRES, but at least 45 % (and up to 65 %) for the other 
models.  The problem is almost certainly associated with the non-differentiable nature of the bucket bias 
penalty; it does not (and cannot) arise with the continuously differentiable log-bias constraint. 

In cross-verification, the efficiencies of the bucket optimiser continue to be worse than those of the other two, 
while the biases of the unconstrained optimiser are worse than those of the other two.  The efficiencies and 
biases associated with the log-bias constraint are more or less commensurate with those of the best optimiser 
for each measure.  However, with the larger scatter of results, the differences between the three objective 
functions are smaller in cross-verification than in calibration, especially for efficiency.   

The biases of the IHACRES model present an interesting case study.  In calibration (Figure 4), the biases are 
extremely small for all three objective functions, and significantly smaller than the biases for the other four 
models.  This is most likely due to the presence in IHACRES of a parameter that effectively scales rainfall.  
However, in cross-verification, despite IHACRES appearing to not have as great a tendency towards 
underprediction as the other models, its biases have larger interquartile and interdecile ranges than the other 
models.  It appears that the rainfall scaling parameter does not translate well to other catchments.  Perhaps 
this is indicative of errors in the gridded rainfall data in areas of high spatial rainfall gradients.  
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Figure 6.  Box plots of a) cross-verification efficiency and b) cross-verification bias for the 
five models for no constraint (black), bucket constraint (blue) and log-bias constraint (red). 

3426



Viney et al., The usefulness of bias constraints in model calibration for regionalisation to ungauged 
catchments 

A cross-verification study like this gives an indication of the quality of predictions that are likely to occur 
when parameters are regionalised to enable prediction in ungauged catchments.  Where predictions are 
required on a single ungauged catchment, prediction efficiency is probably the most important metric, 
although a good bias is also desirable.  In contrast, where broad-scale predictions are required in a large 
number of ungauged catchments across a region, the user is likely to be at least as interested in mean annual 
flows as in day-to-day flow fluctuations.  In this context, bias becomes more important.  Given these 
considerations, it would seem desirable to include some sort of bias constraint in model calibration.  
Compared to the unconstrained case, the use of either of the constraints assessed here leads to improved bias 
characteristics in regionalisation with little diminution in efficiency.  In particular, the log-bias constraint 
would appear to provide the best solution. 

6. CONCLUSIONS 

Calibration of five rainfall runoff models in 89 catchments using three separate objective functions which 
give varying weights to efficiency and bias measures has shown that objective functions weighted more 
heavily towards efficiency give predictions with relatively poorer bias, while those weighted more heavily 
towards bias give predictions with slightly poorer efficiency.  These trends persist when the calibrated 
parameters from nearest neighbour catchments are used in cross-verification tests.  The log-bias constraint is 
shown to provide cross-verification predictions with efficiencies almost indistinguishable from those for the 
unconstrained case and with biases at least as good as those of the more severe bucket constraint.  
Furthermore, this constraint does not suffer from the numerical issues that can affect predictions using the 
non-continuously differentiable bucket constraint.  These results provide cautious support for incorporating 
bias constraints into calibration routines when model parameters are subsequently used for prediction in 
ungauged basins.  In particular, the use of the smoother log-bias constraint is recommended. 
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