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Extended Abstract:  Urban hydrology has traditionally used extreme rainfall information from Intensity –
Frequency – Duration (IFD) curves to obtain design storms for the purpose of design flood analysis. Design storm 
approaches pose uncertainty in the estimated flood as the influence of catchment antecedent conditions cannot be 
properly accounted for, leading to an underestimation of the design flood. Hence, generating continuous series of 
rainfall using a stochastic procedure that can better reflect such antecedent characteristics presents an attractive 
alternative.  Rainfall disaggregation is one such method. This paper evaluates three rainfall disaggregation methods 
with different theoretical underpinnings, namely Random Multiplicative Cascades (Microcanonical and Canonical 
versions), Randomized Bartlett Lewis Model (RBLM) coupled with Proportional Adjusting Procedure, and the 
Method of Fragments (MOF). These models were used to perform disaggregation from daily to hourly rainfall using 
86 years (1916 – 2001) of continuous hourly rainfall observed rainfall data from Observatory Hill weather station, 
Sydney. A few statistics of interest from 
a flood design perspective including 
rainfall variability and intermittency, wet 
spells and the reproduction of extreme 
values were investigated. While all 
models reproduced standard statistics 
such as mean, variance, lag -1 –
autocorrelation and dry proportions well, 
only the MOF was found to match 
observed IFD behaviour at hourly scale 
with the cascade models both 
underestimating (Canonical) and 
overestimating (Microcanonical) extreme 
rainfall. The RBLM poorly simulated low 
ARI events (see Fig 1). A study of within 
day wet spell distributions produced 
results consistent with IFD analyses: i.e. 
that the Microcanonical and Canonical 
models both underestimated and 
overestimated mean spell lengths 
respectively. The RBLM and MOF 
models characterized wet spell 
distribution fairly well.  It is suggested 
that the poor performance of the 
microcanonical  cascade model may be 
attributed to the unsuitability of assumed 
probability distribution function.  
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Figure 1: Empirical 1 hour IFD curves for observed and disaggregated 
rainfall 
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1. INTRODUCTION 

A wide range of applications involving the planning, design and management of small (especially urban) water 
resources systems rely on the proper estimation of a design flood. A conventional approach is to ascertain the design 
rainfall intensity (or design storm hyetograph) from the available Intensity –Frequency – Duration (IFD) curves 
developed for the region, and convert it to a corresponding flood hydrograph using a rainfall runoff model. 
However, the IFD based design storm poses uncertainty in the estimated flood as the influence of catchment 
antecedent conditions cannot be properly accounted for. Additionally, IFD relationships are typically developed 
using a single maximum rainfall event per year which may not necessarily translate to the corresponding annual 
maximum flow event for that year depending on catchment antecedent conditions. This non-consideration of 
antecedent conditions may subsequently lead to an underestimation/overestimation of the design flood (Sharma and 
Srikanthan, 2006), especially for low return periods. For example, if the catchment is wet before a design event, the 
resulting flood will be greater than otherwise. Hence, an alternative to this design storm based approach is to use 
continuous series of rainfall that can better reflect such antecedent characteristics. However, the existence of such 
data in reality is scarce due to the fact that its measurements are costly and time-consuming.  

To address this issue, previous studies have suggested the use of high resolution data generated from available low-
resolution (daily) data through a data transformation procedure (Sivakumar and Sharma, 2008; Molnar and 
Burlando, 2005). A wide variety of models have been proposed in the literature to obtain fine temporal scale rainfall 
data from a coarser scale, namely from a daily to sub-daily level by way of rainfall disaggregation. Some common 
rainfall disaggregation models include Random Cascade Models based on scale invariance theory (Menabde and 
Sivapalan, 2000; Molnar and Burlando, 2005) as well as the Bartlett Lewis or Neyman Scott rectangular pulse 
models based on point process theory (Rodriguez -Iturbe et al., 1987).  Given that there are a host of possible 
disaggregation methods achieving the same objective of converting lower resolution rainfall to higher resolution 
rainfall available in the literature with different theoretical underpinnings, it would be useful to compare the results 
produced by different models in light of the application of different theory behind these models.  As such, an attempt 
is made in the present study to evaluate the utility and suitability of different approaches for disaggregation of daily 
to sub-daily rainfall.  

Here, we evaluate the performance of two variants of a simple disaggregation model based on random cascade 
theory (canonical and micro canonical versions of the discrete multiplicative random cascades (Molnar and 
Burlando, 2005; Over and Gupta, 1994) the Randomized Bartlett Lewis Model (RBLM) (Koutsoyannis and Onof 
2001), as well as the non-parametric method of fragments based on observed fractions of rainfall (MOF) (Sharma 
and Srikanthan, 2006), with each model assessed in the context of disaggregation. Cascades based models are 
chosen for study here in light of the encouraging results earlier studies have reported (Molnar and Burlando, 2005), 
and also their appeal from a practical viewpoint because they are parameter parsimonious. The RBLM, being a 
widely applied stochastic rainfall generator, has also formed the basis for the development of other variants. 
Therefore, possible complications (if any) that arise from this model when tested in the disaggregation context will 
have far reaching ramifications that extend to other models which apply the RBLM logic. Lastly, the MOF is 
included to test the performance of a non-parametric model against its parametric counterparts. It is helpful to note 
that while the random cascades and method of fragments models have been exclusively used as ‘disaggregators’, the 
RBLM in its original form was applied strictly as rainfall simulator. The RBLM has since been modified and 
accorded with an appropriate adjusting procedure to enable it to be applied as a rainfall disaggregator (Koutsoyannis 
and Onof, 2001).  

In this study, we choose our target disaggregation time step as hourly as it is appropriate for flood design purposes 
even in small catchments with response times or ‘times of concentration’ less than a day. As this study is primarily 
conducted to obtain fine resolution rainfall for the purposes of flood design, we are especially interested in knowing 
how realistically the models simulate rainfall variability and rainfall intermittency as well as the extremes.  In 
addition, a measurement of the sensitivity of estimated parameter values is conducted. This will help to improve our 
understanding of internal storm structure, the importance and influence of individual parameters, and hence the 
rainfall phenomenon in general. Gauging each model’s ability to realistically simulate wet spells at an hourly time 
step would provide important information regarding rainfall intermittency properties, as well as reproduction of 
other standard statistics such as mean, variance, lag -1 –autocorrelation and dry proportions. IFD type analyses will 
also be performed to ascertain each model’s ability to simulate extreme rainfall occurrences.  The study is conducted 
using 86 years (1916 – 2001) of continuous hourly observed rainfall data from Observatory Hill, Sydney with 
negligible missing data. 
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2. MODEL DESCRIPTION 
 

2.1 Random Multiplicative Cascades (RMC) 

Multiplicative random cascade models originate from turbulence theory and have been increasingly used in rainfall 
modelling in recent years (Menabde et al., 1997).  Although these models are purely phenomenological because the 
exact relationship between turbulence and rainfall remains unclear (for example, physical processes that produce 
large areas of uniform rain and small convective showers are intrinsically different and therefore are unlikely to be 
simply different realizations of a RMC with the same parameters) their ability to reproduce observed structures in 
rainfall pattern analysis and its statistical properties have justified their continued application (Menabde et al., 1997). 
According to general multi-fractal theory, once fluctuations at a given scale are understood, those at other scales are 
deduced from scale invariance (via connecting a common thread through moments at different scales) and need not 
be independently specified. In particular, this study applies two versions of a larger group of models which operate 
based on the theory of scale invariance.  These models were chosen due to good results reported in Molnar and 
Burlando (2005) when applied to temperate climate of Zurich, Switzerland. The section below summarizes the basic 
methodology of the models: 

The canonical RMC model distributes rainfall on 
successive sub divisions (see Fig 2) with b as the 
branching number. As such, the ith interval after n 
levels of subdivision is denoted as . The 
dimensionless scale is defined as λn = b-n. The 
distribution of mass then occurs via a multiplicative 
process through all levels, n of the cascade, such that 
the mass,  , in sub division  is: 

 (1)                                    

Where, r0  is the initial rainfall depth (in our case, daily 
rainfall) at n = 0, and Wj(i) (hereafter denoted as just 
W for ‘weights’)  is a range of weights that essentially 
forms the cascade generator (Molnar and Burlando, 
2005). W is treated as an independent and identically 

distributed (iid) random variable, with the important condition that E(W) =1 so that mass is conserved, on average 
through all levels of the cascade although weights at each time step are not constrained to add up to unity. Properties 
of W can be estimated from the moment scaling function behaviour across all scales of interest. In addition, this 
study assumed a Bernoulli distribution for intermittency and lognormal distribution for controlling rainfall amounts.  
As such, the intermittent lognormal - β – model (Gupta and Waymire, 1993) was applied. The intermittent 
lognormal - β – model weights generator can be expressed as W = BY, where B (the intermittency factor) controls 
intermittency in rainfall and Y controls rainfall amounts. In order to divide rainfall into rainy and non-rainy portions, 
the intermittent section of the model is based on the following probabilities derived according to the Bernoulli 
distribution with parameter β. Variability in the positive part of the generator (i.e. where B > 0) is derived from the 
lognormal distribution with parameter σ2 to characterize the variance of Y. 

The micro canonical cascade model by definition conserves mass exactly at each cascade level. Hence, for a cascade 
with branching order (b) of two, the micro canonical weights (M) must either equal to a combination of [0, 1] when 
intermittency arises (hereafter intermittent part), or [M, 1-M], where 0 < M < 1 when there is no intermittency 
(hereafter variability part). The microcanonical cascade also differs from its canonical counterpart because its 
weights (M) are scale dependent and not iid. 

The intermittency parameter (p), and variability parameter (a) are estimated from the breakdown coefficients, which 
are defined as the ratio of rainfall of a random field averaged over different scales to account for decrease in 
variance with decrease in timescales (see Menabde and Sivapalan, 2000). More specifically, p represents the 
probability that one of the intervals in disaggregation is dry for scales between n and n + 1 and therefore is simply 
estimated from historical rainfall. a is estimated from the single parameter (symmetrical)  Beta distribution (Molnar 
and Burlando, 2005): 

Figure 2: Framework of canonical RMC with branching
number b = 2  and cascade generator W for scales  n = 0, 1,
and 2. r0 denotes ,  rainfall amount at scale 0, (i.e. daily
rainfall) (Molnar and Burlando, 2005) 
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Figure 3: Schematic of the BLM process 

   (2) 

where B(a) is the Beta function with mean E(M) = 0.5 and Var(M) = 1/ (8(a +0.5)) 

Since both a and p have been known to be scale dependent ( Menabde and Sivapalan, 2000), we have also fitted the 
scale dependent behavior of these parameters by power functions with scale (not shown here). 

2.2 Randomized Bartlett Lewis Model (RBLM) 

The Bartlett Lewis Model (BLM) is a point process model originally developed by Rodriguez-Iturbe et al (1987) 
that represents rainfall events as clusters of rain cells where each cell is considered a pulse with a random duration 
and random intensity. The logic of the original BLM model produces a sequence of storm cells each having its own 
intensity and duration. The original BLM process was characterized by 5 parameters (λ, β, γ, η, μx) as follows: The 
generation of a “storm origin” is assumed to follow a Poisson distributed rate process having an expected value of λ.  
Thus the expected value of the time between storm origins is 1/ λ. Each storm origin will generate a variable number 
of “storm cells” until a certain time from the storm origin is exceeded, at which time cell generation ceases (see Fig 
3).  In the original BLM, this time from the storm origin, often called the “generation duration” is taken to be 
exponentially distributed with an expected value of 1/ γ with , where  is a dimensionless parameter. The 
duration of each cell’s contribution is taken to be exponentially distributed with expected value 1/ η. Although the η 
value was a constant in the original BLM, in the RBLM, η values for distinct storms were assumed to be 
independent variables (hence the name “randomized”) from a gamma distribution with shape α and scale 1/ν. In 
essence, the η parameter was now replaced by α and ν.  This meant that the mean and variance of cells from 

different storms now changed randomly from 
storm to storm.  In the RBLM, the first cell is 
formulated to occur at the time of the storm origin, 
and additional cells are generated (until the 
generation duration is exceeded) as a second 
Poisson process with expected value , where 

.  As such, mean time between 
storm cells is and number of storm cells 
generated within generation duration has a mean 
of . The intensity of each cell’s 
contribution (or cell depth) is taken to be 
exponentially distributed with expected value 1/ μx 
.While the RBLM has been a widely applied 
rainfall generator, here it is used to disaggregate 
based on proportional adjusting procedures (see 
Koutsoyannis and Onof, 2001).  

2.3 Method of Fragments  

This method stands in contrast to the RBLM and Cascades models as it is non-parametric. As such, it makes no 
major assumptions about the nature of the relationship between continuous and aggregate rainfall. The MOF 
generates sequences of rainfall that exhibit persistence attributes similar to those observed by maintaining temporal 
dependence at a daily time scale, and then using non-parametric disaggregation logic to impart dependence to sub-
daily time steps (Sharma and Srikanthan, 2006). The methodology of MOF reflects how it represents daily temporal 
dependence by using high frequency rainfall predictors and longer term attributes such that distributional and 
seasonality characteristics. This is done by way of resampling a vector of fragments representing the ratio of the sub-
daily to daily rainfall. Resampling is performed by via a modified K-nearest neighbour algorithm (Sharma and 
Srikanthan, 2006; Lall and Sharma, 1996) on the basis of the two criteria, the first being that ‘within day’ fractions 
are sampled from an ‘observation window’ that spans 15 days on either side of our day of interest. This would 
increase the sample size available for sampling purposes and also account for effects of seasonality. For example, if 
we want to disaggregate daily rainfall on 15th Jan of our daily time series, we look into entire month of January (1-
14, 16-30) to find the nearest neighbor in rainfall amounts. The second criterion requires rainfall on our day of 
interest to satisfy a pre-specified configuration of dry or wet ‘states’. This is important because it will help to 
identify whether our ‘wet’ day of interest lies at the start, the end or in the middle of a storm. As such, our ‘selected’ 
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Table 1: Reproduction of standard statistics by different models

1 HR Mean Variance 

lag-1-
autocova
riance 

Dry 
Proportion 

Observed 0.133 0.920 0.484 0.908 

RBLM 0.127 0.871 0.501 0.954 

MOF 0.127 0.907 0.439 0.913 

CANON 0.132 0.865 0.218 0.894 

MICRO 0.128 2.398 0.278 0.913 

 
Figure 4: Canonical cascade parameters β and σ2 
showing significant fluctuations when estimated at 
both annual and monthly basis.  

day from history is expected to be accorded with a more realistic distribution, compatible with our future wet day of 
interest (Sharma and Srikanthan, 2006).    

3. PARAMETER ESTIMATION 
 

3.1 Cascade Models 

The canonical model parameters for intermittency and 
variability, β and σ2, were estimated based on the 
relationship between log moments about the origin of order 
0 to 4, versus time scale for the entire rainfall record. For 
further details on this procedure, see Molnar and Burlando 
(2005).  To assess the stability of the parameters, estimation 
was performed on a seasonal (monthly) basis as well as 
separately for each year of the record without consideration 
of seasonal variations. Interestingly, this study found that 
both parameters β and σ2, when estimated on a yearly basis 
fluctuated significantly (see Fig 4). These annual scale 
fluctuations could possibly be attributed to low frequency 
signals, something we aim to investigate in future studies. 
On a monthly basis, the same parameters also hinted at a 
strong seasonal structure which was curious since Sydney 
monthly is fairly uniform. The beta distribution produced a 
poor fit for the variability parameter of the micro canonical 
model (results not included here). In particular, while the 
variance of the observed cascade weights was well 
simulated, its distribution that was highly skewed towards 
the mean at fine time scales (i.e. 120mins to 60 mins) could 
not be reproduced.  

3.2 RBLM 

The parameters for RBLM were estimated on a monthly basis, assuming local stationarity within the month 
according to procedures set out in Koutsoyiannis (2000) where method of moments was used (Rodriguez-Iturbe et 
al., 1987). The set of parameters to be fitted is given by the set , where . Parameters that 
control storm generation duration,   and  were unstable, and resulted in generation of storms with physically 
unfeasible, excessively long durations. As such, we used an acceptable storm threshold, based on observed storm 
lengths, to prevent the trawling of ‘useless’ parameter space that also is flexible enough to allow for possibility of a 
varying number of acceptable parameter combinations.  

 

4. RESULTS AND DISCUSSION 
 

4.1 Reproduction of Standard 
Statistics 

All the models were generally able to 
reproduce the mean hourly rainfall well (see 
Table 1). However, for the hourly variance, 
the micro canonical model performed poorly 
compared to the other models. The micro 
canonical model over estimated the observed 
hourly variance by a significant margin. It is 
contended that the single parameter beta 
distribution that was used to estimate 
variability in non-intermittent weights is not 
well suited to Sydney rainfall, thus 
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highlighting the importance of choosing an appropriate probability distribution for fitting the data in any parametric 
model. Dry proportions were well reproduced by all models (with a slight over estimation by the RBLM) except the 
canonical model. 

4.2 Extreme Value Analysis 

 IFD curves for the 1 and 24 hour durations were constructed based on empirical cumulative distribution of the 
rainfall series from observed and disaggregated rainfall series. As evidenced in Fig 1, at hourly timescale, MOF 
most closely resembles observed IFD.  The canonical cascades model slightly underestimates extreme rainfall 
characteristics by underestimating the magnitude of the highest of rainfall intensity for short duration storms of 1 
hour. The micro canonical cascades model on the other hand has its IFD curve overestimating rainfall intensities and 
as such also poorly captures extreme rainfall characteristics. This may be attributed to the inflated variance in 
rainfall disaggregated by this model.  The RBLM also produced an underestimate of the empirical IFD, and was 
especially poor at simulating events at lower Annual Recurrence Intervals (ARI). All models preserved 24 hour 
maxima well, which is to be expected since the disaggregation exercise was performed from a daily to hourly scale. 

4.3 Wet Spells 

 The generation of realistic wet spells is 
important from a design flood perspective 
because rainfall intermittency and 
persistence need to be quantified to gauge 
antecedent catchment soil conditions. This 
cannot be achieved simply by an undertaking 
an IFD analysis of extreme values. For 
purposes of this study, a wet spell is defined 
by consecutive hours of rainfall within a 
rainy day since we are primarily concerned 
with gauging the model’s performance 
exclusively as daily to sub-daily 
disaggregators. The MOF model best 
captures observed wet spell properties of 
interest such as the mean spell length per day 
(an average of all spells of different lengths 
occurring within a day) and mean number of 
spell occurrences per day(see Fig 5). Both 
the cascades models underestimate mean wet 
spell lengths. The canonical model in 
particular failed to generate within day wet 
spells longer than four hours which suggests 
that it poorly simulates rainfall persistence. 
This may be caused by its inherent model 
structure which does not require cascade 

weights to be conserved at each time step, 
thus resulting in physically unrealistic 

generation of zero rainfall values at scale n + 1  where scale n contained rainfall. 

5. CONCLUSION 

This paper evaluated the performance of some widely known daily rainfall disaggregators such as the RBLM, two 
versions of the random cascades model and MOF model using continuous rainfall data of Sydney.  In particular, the 
models were gauged in the areas of reproduction of standard rainfall statistics, extreme values and reproduction of 
wet spells. In terms of reproduction of observed statistics, the MOF model generally outperformed the other models. 
This is not entirely unexpected given that the MOF logic operates based on resampling of observed rainfall fractions 
(at sub-daily time scale) and is therefore expected to produce statistics that bear the closest resemblance to observed 
data. This model, however, requires a long record of continuous rainfall data. In the absence of such data, parameter 
based approaches may be employed by estimating parameters from sites of similar climate that have continuous 
rainfall data. The RBLM also performed better on average than the cascade models albeit with a slightly inflated 

Figure 5: Within Day Wet Spell Distribution for disaggregation 
models compared to observed wet spells.   
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reproduction of dry proportions at an hourly scale. However, complications were encountered during parameter 
estimation stage, and the choice of statistics (and the time scales at which these statistics are gauged) remains 
subjective. The microcanonical model did not perform satisfactorily when applied to Sydney rainfall, which can be 
explained by the beta distribution producing a poor fit. As a result, intermittency and rainfall variability were not 
well captured, and disaggregated rainfall produced shorter than observed wet spells with more intense rainfall. In 
general, as both cascade models are wholly reliant on cascade weights, the selection of appropriate distribution of 
the weights is of great importance. In addition, one has to apply parameter parsimonious models such as cascade 
models with caution: it is contended here that physically different mechanisms (i.e. contrast between temporal 
distribution of convective and frontal rainfall) are unlikely to be simply the result of drastically different realizations 
of the same parameters. Secondly, parameter uncertainty may arise from the failure to account for longer term, low 
frequency modes that influence South East Australian rainfall such as El- Nino Southern Oscillation type events as 
well as seasonality.  

Concluding, with the advent of climate change, we believe that discerning the relative weaknesses and strengths of 
each model is especially important as there is anticipated to be more frequent applications of the disaggregation 
methods to downscaled daily rainfall series from global climate models in the future. As such, information regarding 
the performance of the models is expected to guide hydrologists in applying daily to sub-daily disaggregators with 
greater insight.  
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