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Extended Abstract: Urban hydrology has traditionally used extreme rainfall information from Intensity —
Frequency — Duration (IFD) curves to obtain design storms for the purpose of design flood analysis. Design storm
approaches pose uncertainty in the estimated flood as the influence of catchment antecedent conditions cannot be
properly accounted for, leading to an underestimation of the design flood. Hence, generating continuous series of
rainfall using a stochastic procedure that can better reflect such antecedent characteristics presents an attractive
alternative. Rainfall disaggregation is one such method. This paper evaluates three rainfall disaggregation methods
with different theoretical underpinnings, namely Random Multiplicative Cascades (Microcanonical and Canonical
versions), Randomized Bartlett Lewis Model (RBLM) coupled with Proportional Adjusting Procedure, and the
Method of Fragments (MOF). These models were used to perform disaggregation from daily to hourly rainfall using
86 years (1916 — 2001) of continuous hourly rainfall observed rainfall data from Observatory Hill weather station,
Sydney. A few statistics of interest from
a flood design perspective including
rainfall variability and intermittency, wet Empirical IFD (1HR)
spells and the reproduction of extreme
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such as mean, variance, lag -1 -
autocorrelation and dry proportions well,
only the MOF was found to match S
observed IFD behaviour at hourly scale
with  the cascade models both
underestimating (Canonical) and
overestimating (Microcanonical) extreme
rainfall. The RBLM poorly simulated low
ARI events (see Fig 1). A study of within
day wet spell distributions produced
results consistent with IFD analyses: i.e.
that the Microcanonical and Canonical
models  both  underestimated and
overestimated mean spell lengths
respectively. The RBLM and MOF
models  characterized  wet  spell
distribution fairly well. It is suggested | | ‘ | |
that the poor performance of the 0.01 04 05 0.9 0.99
microcanonical cascade model may be
attributed to the unsuitability of assumed

probability distribution function.
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Figure 1: Empirical 1 hour IFD curves for observed and disaggregated
rainfall
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1. INTRODUCTION

A wide range of applications involving the planning, design and management of small (especially urban) water
resources systems rely on the proper estimation of a design flood. A conventional approach is to ascertain the design
rainfall intensity (or design storm hyetograph) from the available Intensity —Frequency — Duration (IFD) curves
developed for the region, and convert it to a corresponding flood hydrograph using a rainfall runoff model.
However, the IFD based design storm poses uncertainty in the estimated flood as the influence of catchment
antecedent conditions cannot be properly accounted for. Additionally, IFD relationships are typically developed
using a single maximum rainfall event per year which may not necessarily translate to the corresponding annual
maximum flow event for that year depending on catchment antecedent conditions. This non-consideration of
antecedent conditions may subsequently lead to an underestimation/overestimation of the design flood (Sharma and
Srikanthan, 2006), especially for low return periods. For example, if the catchment is wet before a design event, the
resulting flood will be greater than otherwise. Hence, an alternative to this design storm based approach is to use
continuous series of rainfall that can better reflect such antecedent characteristics. However, the existence of such
data in reality is scarce due to the fact that its measurements are costly and time-consuming.

To address this issue, previous studies have suggested the use of high resolution data generated from available low-
resolution (daily) data through a data transformation procedure (Sivakumar and Sharma, 2008; Molnar and
Burlando, 2005). A wide variety of models have been proposed in the literature to obtain fine temporal scale rainfall
data from a coarser scale, namely from a daily to sub-daily level by way of rainfall disaggregation. Some common
rainfall disaggregation models include Random Cascade Models based on scale invariance theory (Menabde and
Sivapalan, 2000; Molnar and Burlando, 2005) as well as the Bartlett Lewis or Neyman Scott rectangular pulse
models based on point process theory (Rodriguez -Iturbe et al., 1987). Given that there are a host of possible
disaggregation methods achieving the same objective of converting lower resolution rainfall to higher resolution
rainfall available in the literature with different theoretical underpinnings, it would be useful to compare the results
produced by different models in light of the application of different theory behind these models. As such, an attempt
is made in the present study to evaluate the utility and suitability of different approaches for disaggregation of daily
to sub-daily rainfall.

Here, we evaluate the performance of two variants of a simple disaggregation model based on random cascade
theory (canonical and micro canonical versions of the discrete multiplicative random cascades (Molnar and
Burlando, 2005; Over and Gupta, 1994) the Randomized Bartlett Lewis Model (RBLM) (Koutsoyannis and Onof
2001), as well as the non-parametric method of fragments based on observed fractions of rainfall (MOF) (Sharma
and Srikanthan, 2006), with each model assessed in the context of disaggregation. Cascades based models are
chosen for study here in light of the encouraging results earlier studies have reported (Molnar and Burlando, 2005),
and also their appeal from a practical viewpoint because they are parameter parsimonious. The RBLM, being a
widely applied stochastic rainfall generator, has also formed the basis for the development of other variants.
Therefore, possible complications (if any) that arise from this model when tested in the disaggregation context will
have far reaching ramifications that extend to other models which apply the RBLM logic. Lastly, the MOF is
included to test the performance of a non-parametric model against its parametric counterparts. It is helpful to note
that while the random cascades and method of fragments models have been exclusively used as ‘disaggregators’, the
RBLM in its original form was applied strictly as rainfall simulator. The RBLM has since been modified and
accorded with an appropriate adjusting procedure to enable it to be applied as a rainfall disaggregator (Koutsoyannis
and Onof, 2001).

In this study, we choose our target disaggregation time step as hourly as it is appropriate for flood design purposes
even in small catchments with response times or ‘times of concentration’ less than a day. As this study is primarily
conducted to obtain fine resolution rainfall for the purposes of flood design, we are especially interested in knowing
how realistically the models simulate rainfall variability and rainfall intermittency as well as the extremes. In
addition, a measurement of the sensitivity of estimated parameter values is conducted. This will help to improve our
understanding of internal storm structure, the importance and influence of individual parameters, and hence the
rainfall phenomenon in general. Gauging each model’s ability to realistically simulate wet spells at an hourly time
step would provide important information regarding rainfall intermittency properties, as well as reproduction of
other standard statistics such as mean, variance, lag -1 —autocorrelation and dry proportions. IFD type analyses will
also be performed to ascertain each model’s ability to simulate extreme rainfall occurrences. The study is conducted
using 86 years (1916 — 2001) of continuous hourly observed rainfall data from Observatory Hill, Sydney with
negligible missing data.
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2. MODEL DESCRIPTION

2.1 Random Multiplicative Cascades (RM C)

Multiplicative random cascade models originate from turbulence theory and have been increasingly used in rainfall
modelling in recent years (Menabde et al., 1997). Although these models are purely phenomenological because the
exact relationship between turbulence and rainfall remains unclear (for example, physical processes that produce
large areas of uniform rain and small convective showers are intrinsically different and therefore are unlikely to be
simply different realizations of a RMC with the same parameters) their ability to reproduce observed structures in
rainfall pattern analysis and its statistical properties have justified their continued application (Menabde et al., 1997).
According to general multi-fractal theory, once fluctuations at a given scale are understood, those at other scales are
deduced from scale invariance (via connecting a common thread through moments at different scales) and need not
be independently specified. In particular, this study applies two versions of a larger group of models which operate
based on the theory of scale invariance. These models were chosen due to good results reported in Molnar and
Burlando (2005) when applied to temperate climate of Zurich, Switzerland. The section below summarizes the basic
methodology of the models:

B The canonical RMC model distributes rainfall on
—~_ n=04,=2" successive sub divisions (see Fig 2) with b as the
branching number. As such, the ith interval after n
levels of subdivision is denoted as AL. The
A=,k =20 dimensionless scale is defined as A, = b™”. The
N distribution of mass then occurs via a multiplicative
¥ 1 K . process through all levels, n of the cascade, such that

W W1) | W@ W | W@ W) | wid) w2 the mass, &, in sub division EE} is:
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Figure 2: Framework of canonical RMC with branching Where, 1y is the initial rainfall depth (in our case, daily

number b =2 and cascade generator I for scales n =0, 1, rainfall) atn =0, and (i) (hereafter denoted as just

and 2. ry denotes , rainfall amount at scale 0, (i.e. daily W for “weights”) is a range of weights that essentially
rainfall) (Molnar and Burlando, 2005) forms the cascade generator (Molnar and Burlando,

2005). W is treated as an independent and identically
distributed (iid) random variable, with the important condition that £(#) =1 so that mass is conserved, on average
through all levels of the cascade although weights at each time step are not constrained to add up to unity. Properties
of W can be estimated from the moment scaling function behaviour across all scales of interest. In addition, this
study assumed a Bernoulli distribution for intermittency and lognormal distribution for controlling rainfall amounts.
As such, the intermittent lognormal - f — model (Gupta and Waymire, 1993) was applied. The intermittent
lognormal - f — model weights generator can be expressed as W = BY, where B (the intermittency factor) controls
intermittency in rainfall and Y controls rainfall amounts. In order to divide rainfall into rainy and non-rainy portions,
the intermittent section of the model is based on the following probabilities derived according to the Bernoulli
distribution with parameter f. Variability in the positive part of the generator (i.e. where B > 0) is derived from the
lognormal distribution with parameter o to characterize the variance of Y.

The micro canonical cascade model by definition conserves mass exactly at each cascade level. Hence, for a cascade
with branching order (b) of two, the micro canonical weights (M) must either equal to a combination of [0, 1] when
intermittency arises (hereafter intermittent part), or [M, 1-M], where 0 < M < | when there is no intermittency
(hereafter variability part). The microcanonical cascade also differs from its canonical counterpart because its
weights (M) are scale dependent and not iid.

The intermittency parameter (p), and variability parameter (a) are estimated from the breakdown coefficients, which
are defined as the ratio of rainfall of a random field averaged over different scales to account for decrease in
variance with decrease in timescales (see Menabde and Sivapalan, 2000). More specifically, p represents the
probability that one of the intervals in disaggregation is dry for scales between n and n + [ and therefore is simply
estimated from historical rainfall. a is estimated from the single parameter (symmetrical) Beta distribution (Molnar
and Burlando, 2005):
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FO) = 2= ptms (1 — ppt-e 2)

oiel
where B(a) is the Beta function with mean E(M) = 0.5 and Var(M) = 1/ (8(a +0.5))

Since both @ and p have been known to be scale dependent ( Menabde and Sivapalan, 2000), we have also fitted the
scale dependent behavior of these parameters by power functions with scale (not shown here).

2.2 Randomized Bartlett LewisModel (RBLM)

The Bartlett Lewis Model (BLM) is a point process model originally developed by Rodriguez-Iturbe et al (1987)
that represents rainfall events as clusters of rain cells where each cell is considered a pulse with a random duration
and random intensity. The logic of the original BLM model produces a sequence of storm cells each having its own
intensity and duration. The original BLM process was characterized by 5 parameters (4, 5, y, 7, i) as follows: The
generation of a “storm origin” is assumed to follow a Poisson distributed rate process having an expected value of /.
Thus the expected value of the time between storm origins is 1/ 4. Each storm origin will generate a variable number
of “storm cells” until a certain time from the storm origin is exceeded, at which time cell generation ceases (see Fig
3). In the original BLM, this time from the storm origin, often called the “generation duration” is taken to be
exponentially distributed with an expected value of 1/ y with - = @ % ¥, where ¢ is a dimensionless parameter. The
duration of each cell’s contribution is taken to be exponentially distributed with expected value 1/ . Although the n
value was a constant in the original BLM, in the RBLM, # values for distinct storms were assumed to be
independent variables (hence the name “randomized”) from a gamma distribution with shape o and scale 1/v. In
essence, the # parameter was now replaced by a and v. This meant that the mean and variance of cells from
different storms now changed randomly from
storm to storm. In the RBLM, the first cell is
origin storm End of cell formulated to occur at the time of the storm origin,

origin generation and additional cells are generated (until the
generation duration is exceeded) as a second
cell ntensity Poisson process with expected value f, where
(1 {for cell 2) f=x=v/d.  As such, mean time between
storm cells is 1 #and number of storm cells
Cell1 Cell1 cell3 generated within generation duration has a mean
of 1+ @#fy. The intensity of each cell’s

» > < N| -— contribution (or cell depth) is taken to be
Generation Duration (y) ~ Time between Storms (1/A)  Time between successive cells (n) exponentially distributed with expected value 1/ My
.While the RBLM has been a widely applied
Figure 3: Schematic of the BLM process rainfall generator, here it is used to disaggregate
based on proportional adjusting procedures (see

Koutsoyannis and Onof, 2001).

Storm Next

Cell2

2.3 Method of Fragments

This method stands in contrast to the RBLM and Cascades models as it is non-parametric. As such, it makes no
major assumptions about the nature of the relationship between continuous and aggregate rainfall. The MOF
generates sequences of rainfall that exhibit persistence attributes similar to those observed by maintaining temporal
dependence at a daily time scale, and then using non-parametric disaggregation logic to impart dependence to sub-
daily time steps (Sharma and Srikanthan, 2006). The methodology of MOF reflects how it represents daily temporal
dependence by using high frequency rainfall predictors and longer term attributes such that distributional and
seasonality characteristics. This is done by way of resampling a vector of fragments representing the ratio of the sub-
daily to daily rainfall. Resampling is performed by via a modified K-nearest neighbour algorithm (Sharma and
Srikanthan, 2006; Lall and Sharma, 1996) on the basis of the two criteria, the first being that ‘within day’ fractions
are sampled from an ‘observation window’ that spans 15 days on either side of our day of interest. This would
increase the sample size available for sampling purposes and also account for effects of seasonality. For example, if
we want to disaggregate daily rainfall on 15" Jan of our daily time series, we look into entire month of January (1-
14, 16-30) to find the nearest neighbor in rainfall amounts. The second criterion requires rainfall on our day of
interest to satisfy a pre-specified configuration of dry or wet ‘states’. This is important because it will help to
identify whether our ‘wet’ day of interest lies at the start, the end or in the middle of a storm. As such, our ‘selected’
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day from history is expected to be accorded with a more realistic distribution, compatible with our future wet day of

interest (Sharma and Srikanthan, 2006).

3. PARAMETER ESTIMATION

31 Cascade Models

The canonical model parameters for intermittency and
variability, f and o°, were estimated based on the
relationship between log moments about the origin of order
0 to 4, versus time scale for the entire rainfall record. For
further details on this procedure, see Molnar and Burlando
(2005). To assess the stability of the parameters, estimation
was performed on a seasonal (monthly) basis as well as
separately for each year of the record without consideration
of seasonal variations. Interestingly, this study found that
both parameters £ and o”, when estimated on a yearly basis
fluctuated significantly (see Fig 4). These annual scale
fluctuations could possibly be attributed to low frequency
signals, something we aim to investigate in future studies.
On a monthly basis, the same parameters also hinted at a
strong seasonal structure which was curious since Sydney
monthly is fairly uniform. The beta distribution produced a
poor fit for the variability parameter of the micro canonical
model (results not included here). In particular, while the
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variance of the observed cascade weights was well
simulated, its distribution that was highly skewed towards
the mean at fine time scales (i.e. 120mins to 60 mins) could
not be reproduced.

Figure 4: Canonical cascade parameters § and °
showing significant fluctuations when estimated at
both annual and monthly basis.

3.2 RBLM

The parameters for RBLM were estimated on a monthly basis, assuming local stationarity within the month
according to procedures set out in Koutsoyiannis (2000) where method of moments was used (Rodriguez-Iturbe et
al., 1987). The set of parameters to be fitted is given by the set @, where @ = {4, s, % %, &% }. Parameters that
control storm generation duration, & and v were unstable, and resulted in generation of storms with physically
unfeasible, excessively long durations. As such, we used an acceptable storm threshold, based on observed storm
lengths, to prevent the trawling of ‘useless’ parameter space that also is flexible enough to allow for possibility of a
varying number of acceptable parameter combinations.

4. RESULTSAND DISCUSSION

4.1 Reproduction of Standard

Statistics Table 1: Reproduction of standard statistics by different models
All the models were generally able to
reproduce the mean hourly rainfall well (see lag-1- Dry
. autocova

Tableil). Howeyer, for the hourly variance, 1HR Mean Variance riance Proportion
the micro canonical model performed poorly
compared to the other models. The micro Observed 0.133 0.920 0.484 0.908
canonical rpodel over e':stiTnated the observgd RBLM 0127 0871 0,501 0.954
hourly variance by a significant margin. It is

. MOF 0.127 0.907 0.439 0.913
contended that the single parameter beta
distribution that was used to estimate CANON 0.132 0.865 0218 0.894
variability in non-intermittent weights is not MICRO 0.128 2.398 0.278 0.913
well suited to Sydney rainfall, thus
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highlighting the importance of choosing an appropriate probability distribution for fitting the data in any parametric
model. Dry proportions were well reproduced by all models (with a slight over estimation by the RBLM) except the
canonical model.

4.2 Extreme Value Analysis

IFD curves for the 1 and 24 hour durations were constructed based on empirical cumulative distribution of the
rainfall series from observed and disaggregated rainfall series. As evidenced in Fig 1, at hourly timescale, MOF
most closely resembles observed IFD. The canonical cascades model slightly underestimates extreme rainfall
characteristics by underestimating the magnitude of the highest of rainfall intensity for short duration storms of 1
hour. The micro canonical cascades model on the other hand has its IFD curve overestimating rainfall intensities and
as such also poorly captures extreme rainfall characteristics. This may be attributed to the inflated variance in
rainfall disaggregated by this model. The RBLM also produced an underestimate of the empirical IFD, and was
especially poor at simulating events at lower Annual Recurrence Intervals (ARI). All models preserved 24 hour
maxima well, which is to be expected since the disaggregation exercise was performed from a daily to hourly scale.

4.3 Wet Spells

The generation of realistic wet spells is
Within Day Wet Spell Length Distribution important from a design flood perspective
because rainfall Intermittency and
Observed persistence need to be quantified to gauge
MOF antecedent catchment soil conditions. This

Canonical
Microcanonical cannot be achieved simply by an undertaking

2 RBLM an IFD analysis of extreme values. For
purposes of this study, a wet spell is defined
by consecutive hours of rainfall within a
rainy day since we are primarily concerned
with gauging the model’s performance
exclusively as daily to  sub-daily
disaggregators. The MOF model best
- captures observed wet spell properties of
interest such as the mean spell length per day
(an average of all spells of different lengths
occurring within a day) and mean number of
spell occurrences per day(see Fig 5). Both
the cascades models underestimate mean wet
m.‘ spell lengths. The canonical model in
o | A sm e o oo particular failed to generate within day wet
12 34 56 78 910 1314 1718 21.22 23.24 spells longer than four hours which suggests
that it poorly simulates rainfall persistence.
This may be caused by its inherent model
Figure 5: Within Day Wet Spell Distribution for disaggregation structure which does not require cascade
models compared to observed wet spells. weights to be conserved at each time step,
thus resulting in physically unrealistic

generation of zero rainfall values at scale n + I where scale n contained rainfall.
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5. CONCLUSION

This paper evaluated the performance of some widely known daily rainfall disaggregators such as the RBLM, two
versions of the random cascades model and MOF model using continuous rainfall data of Sydney. In particular, the
models were gauged in the areas of reproduction of standard rainfall statistics, extreme values and reproduction of
wet spells. In terms of reproduction of observed statistics, the MOF model generally outperformed the other models.
This is not entirely unexpected given that the MOF logic operates based on resampling of observed rainfall fractions
(at sub-daily time scale) and is therefore expected to produce statistics that bear the closest resemblance to observed
data. This model, however, requires a long record of continuous rainfall data. In the absence of such data, parameter
based approaches may be employed by estimating parameters from sites of similar climate that have continuous
rainfall data. The RBLM also performed better on average than the cascade models albeit with a slightly inflated
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reproduction of dry proportions at an hourly scale. However, complications were encountered during parameter
estimation stage, and the choice of statistics (and the time scales at which these statistics are gauged) remains
subjective. The microcanonical model did not perform satisfactorily when applied to Sydney rainfall, which can be
explained by the beta distribution producing a poor fit. As a result, intermittency and rainfall variability were not
well captured, and disaggregated rainfall produced shorter than observed wet spells with more intense rainfall. In
general, as both cascade models are wholly reliant on cascade weights, the selection of appropriate distribution of
the weights is of great importance. In addition, one has to apply parameter parsimonious models such as cascade
models with caution: it is contended here that physically different mechanisms (i.e. contrast between temporal
distribution of convective and frontal rainfall) are unlikely to be simply the result of drastically different realizations
of the same parameters. Secondly, parameter uncertainty may arise from the failure to account for longer term, low
frequency modes that influence South East Australian rainfall such as El- Nino Southern Oscillation type events as
well as seasonality.

Concluding, with the advent of climate change, we believe that discerning the relative weaknesses and strengths of
each model is especially important as there is anticipated to be more frequent applications of the disaggregation
methods to downscaled daily rainfall series from global climate models in the future. As such, information regarding
the performance of the models is expected to guide hydrologists in applying daily to sub-daily disaggregators with
greater insight.
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