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Abstract: We consider a system of three connected dams consisting of a supply, storage and capture dam, with
capacitied, m andn, respectively. We assume a water management policy of a one unit supply from the supply
dam, a pump-to-fill transfer policy between the dams and a random inputioits with probabilityp,. into the

capture dam. We model the system as a discrete-time Markov chain with statéss, 25, 21) € S wherez; is

the discretised amount of water in the supply dagof the storage dam and of the capture dam. Therefore we
have|S| = (I + 1)(m + 1)(n + 1). The transition matrix] ¢ RUFTDm+D)(n+1)x+1)(m+1)(n+1) for this policy

has the general block structure

A YA XA ... xI24 ¥lA A
A YA Y24 ... XI24 N-l4 4
0 A A ... X34 x4 A4
H=| @ oo
0 o0 o - YA ¥2A As
o 0 0 -- A SA A,
0 0 0 0 A Aq

where A, A; € R(m+H(+D)x(m+1)(n+1) gnd also have a general block structure comprised of blocks of size
R +1x(n+1)  and where is a permutation matrix.

We denote the transient state probability vect0|x§§ and since the transition matrix is irreducible the system
converges to a unique non-zero limiting probability distribution (or steady state probabitities)ch that

T T T T T T
X(t) = X(tfl)H = X(t*l) =X = x =x" H.

The task becomes to solw€ = x” H for x, a left eigenvector problem for the eigenvalie- 1. Due to the large
dimension ofH this task is often difficult and time-consuming. Therefore we consider a reduction technique to
reduce the problem to one of the order of the capacity of the capture dam.

Transforming the problem t¢/ — K)x = 0, where K = H”, the task becomes to solve for the null space of
(I — K). We apply Gaussian elimination to the block structuré of- K) and reduce the original eigenvector
problem to solve the significantly smaller null space problem

(I = Zp) T =0

whereZ,, € R(»*tDx(»+1) The remaining elements of the invariant state probability vector are then evaluated by
the back-substitution process

T, = —Ziﬂ'i+1 and X; = —Xij+1
fori=m-1,m-2,...,1,0andj =1-1,1—-2,...,1,0.
We demonstrate the reduction technique with a small system and calculate the steady state probabilities in a numer-
ical example.

We have observed a pattern for the reduction but have yet to derive a general formula for the reduced problem.
Future work will also include modelling and reduction of larger, more complicated systems where the dimension
of the transition matrix becomes even greater and the steady state probabilities more difficult to calculate.
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1. INTRODUCTION

Motivated by the problems faced by the Snowy Mountain Authority in Australia, Moran (1954, 1959) first published
his work on the theory of dam storage. He considered a finite dam with random inputs and a regular demand and
described a method for evaluating the probability distribution of the amount of water stored in the dam.

More recently Piantadosi (2004) considered the case of two connected dams, a capture and supply dam, with a
regular demand of one unit from the supply dam and random inputs into the capture dam. Modelling the system as
a Markov chain she derived a transition probability matrix with a general block structure to solve for the invariant
state probability vector of the water stored in the dams. Using matrix reduction methods she proceeded to reduce
the size of the problem to one of the order of the capacity of the supply dam.

In a similar approach we consider a system of three connected dams with random inputs into the first, a regular
demand from the last and a pump-to-fill transfer policy and describe a general method for its reduction. The steady
state probabilities are derived from a back-substitution process and may then be used to evaluate the risks associated
with the system such as overflow and failure to satisfy the regular demand. An advantage of having the intermediate
dam is the progressive cleaning of the water as it is pumped across the system, allowing impurities to settle in the
dams.

We consider the first and intermediate dams as separate states, even though it may appear that we could combine
their contents as a single state as we are using the pump-to-fill policy. However, there are cases where these two
dams would not act like one larger dam, for example, when the input is large enough to overflow the first dam when
the intermediate dam is not completely full. Also, this approach will allow us to build on the model in the future to
consider extractions and inputs from the intermediate dam.

2. FORMULATION OF THE PROBLEM

We consider a system of three connected dams consisting of a supply, storage and capture dam with Gapacities
andn, respectively, wheré < m < n. We assume a regular output of one unit from the supply dam at every stage,
a pump-to-fill water transfer policy between the dams and a random inpuid the capture dam. The general
system is shown in Figure 1.
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Figure 1. System of 3 connected dams

We model the system as a discrete-time Markov chain (for example, see Ross (1996)) where each state is defined
asz = (z3,29,21) € S (state space) wherg is the discretised amount of water in the supply dagrthe amount

in the storage dam ang the amount in the capture dam. Thus we hgle= (I + 1)(m + 1)(n + 1) as the total

number of states. More precisely the state ordering is given by

S = {(0,0,0),(0,0,1),...,(0,0,n),(0,1,0),(0,1,1),...,(0,1,n),...,(0,m,0),(0,m,1),...,(0,m,n),
(1,0,0),(1,0,1),...,(1,0,n),(1,1,0),(1,1,1),...,(1,1,n),...,(1,m,0), (1,m,1),...,(1,m,n),
vy (I,my0), (I,my 1), 0, (Lmyn) . @)
The pump-to-fill water transfer policy between the dams aims to transfer as much water as possible to the down-
stream dams in an effort to maximise supply and minimise overflow from the capture dam. The policy operates

with the following general rule: Suppose the amounts of water in the dams is given by state;, 25, 1) before
transferring water. The transfer amounts become

o first transferus = min [25,1 — 23] from the storage to the supply dam, and
e then transfefi; = min [z1, m — (22 — u3)] from the capture to the storage dam.

Then the amounts of water in the dams after the transfers woultlbe =%, 25, 21 ) where

/ / /
2z = 23 + us, Zy = 23 — U3 + Ua, and Z) = 21 — us.
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The probability that units of water enters the capture dam at a given stage is denojgd:-by). Also, we define
the probability of at least units entering the capture damas = >~ _ p,. Note that we must have -, p, = 1.

To determine the transition probabilities we assume the following order of operations during a stage for the water
management policy of the system:

1. output of one unit from the supply dam if available
2. pump-to-fill transfers between the dams (as described above)
3. random input of- units into the capture dam with probability.

With this water management policy and the state orderings given in equation (1) a general form of the stationary
transition probability matrix/ € RU+D(m+1)(n+1)x(+1)(m+1)(n+1) may be derived with the following general
block structure

A TA 324 ... X724 xitla 4
A TA 24 ... 24 w14 4
0 A A - X84 ¥24 4,
H=1 : s : : : (2)
0 O 0 YA Y24 Asg
o 0 0 - A SA A
0 o0 0 0 A Aq
whereA, ¥, A; € Rn+D (1) x(m+1)(n+1)
0 0 0
P 0 0 0 1
m 10 00 0 0 -~ 0
0 o --- 0 0
A= R s 0 I 0 0 A= Py P - Pt
o 0 Py -+ P,
0 0o --- 0 0 0 0 I 0 . .
0 0 P
fori=1,2,...,1,and whereP, P;, P, R, I € R+ x(n+1);
Po P1 P2 - Pi
o o o0 --- 0 )
Py = e ) , Pj=RPy forj=1,2,....,n
0O 0 O 0
0 0 0 1 .
1 0 0 0 . +
R=| 01 00 and pf=| Po Pt Dn for k=1,2,...,n— L.
: O pO - pnil
o 0 .- p:
We letx(;, RUADm+1)(n+1) denote the transient state probability vector at staayed is evaluated by

Therefore we have
Xy = X-nH = <X<th2>H) H = (o) H”
= (xlio)H) H? = x;_gy 1
= ...o= X(T())Ht

wherex%) denotes the probability of the initial state of the system.
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3. SOLUTION PROCEDURE

Due to the general structure of the transition matrix describing an irreducible Markov chain it follows that
lim;_,o H' exists and that the transient state probability vext@r converges to a unique non-zero limiting prob-

ability distributionx™ (also known as the invariant state probability vector, or steady state probabilities) (Ross,
1996). Hence we have the system converging when

T T T T
X(t) = X(f,—l)H = X(t—l) =X .
Thus the problem becomes to solve
xI' =xTH (4)
for x”, a left eigenvector problem with eigenval¥e= 1, under the normalisation” 1 = 1.

We may expand the definition of the invariant state probability vector to
x! = [X%,X{,...,XZT} (5)

wherex! is the invariant state probability vector for the statess, z;), for o = 0,1,...,mandz; =0,1,...,n.

)

When H is large then the problem in equation (4) becomes difficult and time-consuming to solve. We apply a
reduction technique to reduce the size of the problem RS (71D (n+1)x(I+1)(m+1)(n+1) 1o R(n+1)x(n+1)

3.1. Reduction procedure
We begin by transforming the problem to obtain
xI'=x"TH & x=H'x & ([I-K)x=0

whereK = HT and we letC; = PT andC;" = (P;")”. The task now becomes to solve for the null space of
(I — K) to find the invariant state probability vecter

The matrix(I — K) may be divided into/; ; blocks whereJ; ; € RUmHD+)x(m+1)(n+1) andj, j = 0,1, ..., 1.
Therefore the problert/ — K')x = 0 may be written as

Joo Joa - Joyg X0 0
Jio Jig o Jug X1 0

: . : : =1 |- (6)
Jio Jiaoo Ju X 0

We then systematically apply Gaussian elimination (for example, see Hill (1996)) tehherk structure in equa-
tion (6), using pre-multiplication of matrices, with the following general procedure to redueeK) to block-
row-echelon form:

o make the diagonal elemenfs, = I fori =0,1,...,/ — 1, and
o make the elements under the diagasigi = 0 for j > k andk # L.

Note that the elimination procedure requires inverting some key matrices of the fornB) whereB is a sub-

stochastic matrix, thus the inverse(df— B) is well-defined such thdtf — B)~! = >"°° B’ exists.

Therefore(I — K') may be reduced to

I Xy O 0 0
0o I X; O 0
0 O I X5 0
I-K~ (7
00 0 --- I X,
0 O 0o --- 0 I—-X;
where X, X; € Rm+Dnt+D)x(m+1)(n+1) for ; = 1,2,...,1 — 1 with only the first block-column consisting of

non-zero elements R+ x(n+1) of the form

Xo_’j . —Cj - CVJ'CO (8)
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forj=0,1,...,m —1wherea; = &
n—m-—1
XO,m = *Cm - amCO - Z [Cm+k,k + am+kCO,k] - Cn,nfm - Oé;;CO,nfm (9)
k=1
wherea]” = = and
Dbo
X = *C — 03 J (plco +p+C'1) (10)
R pj
wheref; ; = pi (1—p1)—pop:’ and
n—m—1
Xim = = Biom (piCo + p; C1) Z Crntike + Bimsn (PiCok + pi Cri) ]
k=1
*Cm.,n—m - ﬂz n (PzCO n—m +p Cl ,n— m) (11)
n
where g, = m and the matrixC;; < RM+Dx(+1) consists of the column vector
> A —P1)—PoPi
[po,p1,-- - ,pn_j_l,pLj}T afteri columns and rows of zeros.
The problem is now reduced to solve
(I — Xl)Xl =0 (12)

for x; which is still quite large and difficult to solve. However, the redudgd~ (I — X;) can be treated as an
intermediate step in the reduction and may be reduced even further as described in the next section.

3.2. Further reduction

The reduced matrix;; ~ I — X; € Rim+D(1)x(m+1)(n+1) js comprised of blocks of the ord&("+1)x(n+1)
and therefore we may apply Gaussian elimination to the block structure to reduce it even further to the form

I Zy 0 --- 0
o I zZ --- 0
I-Xp~ | 00 : (13)
0 0 e 1 Zm—l
o o --- o I-2,
where Z; € R(tUx(n+1) and we propose they are of the forh = —&:Co fori = 0,1,...,m — 1 and
N; = Dj_yandD; = (1 —p1)N; —poG; forj =1,2,.. -1 WhereNl,Dv,G € R. Due to the general

structure of special matrices of the original transition probab|I|ty matrix it follows that the reduced problem will
also have a general formula but has not been derived as yet though there appears to be a pattern emerging in the
examples.

If we definex! as
T

X; = [ﬂ()T,ﬂlT,...,ﬁg;} (14)
wherer; € R("*1) we have the previous reduction in equation (12) reduced to the problem
(I —Zp)mwm =0. (15)

Since (I — K) is non-singular (as the solution to equation (4) fors not trivial) it follows that(I — Z,,) is
non-singular and a unique solution foy,, exists.

3.3. Back-substitution process

Oncem,, has been determined from solving equation (15) the remainjngrobabilities may be found by the
back-substitution process from the matrices in equation (13) with

™ = —Z‘7T7;+1 (16)
fori=m—1,m—2,...,1,00ivingx] = [« ,#{,...,«]]. Then the remaining; probabilities may also be
evaluated by the back-substitution process defined by the matrix in equation (7):

Xj = =X;Xj41 17
forj=1—1,1—2,...,1,0 to determine the invariant state probability veatdr = [x7,xT,...,x]].
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4. EXAMPLE [=2,m=3,n=5

We consider a small example to illustrate our reduction procedure wher®, m = 3 andn = 5. Then the
transition probability matrixd € R72*72 is given by

A TA A
H=[ A %4 A
0 A A
where

Py, P P Pf 0 0 0 0 0 0 0 0
4—| 0 0 0 0 4| 0 0 0 0 A _| B P PP
0 0 0 o |77 P, P P, Py |0 0 Py P P
0 0 0 0 0 P P Py 0 0 P Pf

and some of thé;, P;" matrices are

1901?1192;03;04105+ 6 0 0 0 0 O
o 0 o0 0 O 0 o 0 O 0 0 0
0O 0 0 0 0 0 Po P1 P2 D3 P1 Dy
P, = and P; 5
0 0O 0 0 0 0 0 0 po p1 p2 P3 Py
00 0 0 0 0 0 0 po pm p2 Py
0 0 0 0 0 O 0 0 0 po p1 py
Then, by Gaussian eliminatiotf’ = x” H is reduced to
I X0 0 7o
I-K~| 0 I X1 and [ — X5~ !
0 0 I-X 00 I 2
2 0 0 0 I-2Z
where
XO,I 0 0 O X1’1 0 0 0
| Xo2 0 0 0 | X12 0 0 0
Xo = Xo3 0 0 0 X = Xi3 0 00
Xoa 0 0 0 Xia 0 00
as defined in equations (8), (9), (10), (11).
The final Z-matrices are
N(]
Zy = —=2
0 DOCO
Dy
71 = — C
! (1 —p1)Do — poG1 0
1-— Doy — poGG
Zy = ( Pl) 0 — Pol1 Co

a (1 - P1)2D0 - Po(l - P1)G1 — poGa

whereNy = p2+, Dy = P;r — pop2, G1 = pops + p1p2 andGy = pa Do + po(pops + p1ps + p2p2), and

1
I-Zy = 1-Cf —— { [p2N2 + polps Do + po(pops + p1pa + p2ps + psp2)]] Co
+ [psN2 + po[p4Do + po(p1pd + papa + psps + pap2)]] Coa
+ [paN2 + po[ps Do + po(p2ps + pspa + paps + pi p2)]] Co2
+ [pF N2 + popo(pspd + papi + pipd)] Cos}
whereD; = (1 —p1)?Dy — po(1 — p1)G1 — poG2 andNy = (1 — p1) Do — poGh.

Then the problem becomes to solve
(I — Z3)7'l'3 =0 (18)

of the orderR%*6 and to calculate the remaining invariant state probabilities by the back-substitution process
v, = —Zl'7'l'i+1 ande = _XijJrl fori = 2,1,0 andj =1,0.
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Consider a numerical example with = 1, p1 = %, p> = &, p3 = &, ps = 5 andpd = 35 where the average
input is one unit, the same as the regular demand, and is hence a balanced system. Then to find the steady state
probabilities we must solve the null space of

3/4  —1/2 0 0 0 0
~1/4  3/4 —1/2 0 0 0
—49/240 -1/8 3/4 —1/2 0 0

T=Zs~ 1 _qijg0 —1/16 —1/8 3/4 —1/2 0

-71/960 —1/32 —1/16 —1/8 3/4 —1/2

~71/960 —1/32 —1/16 —1/8 —1/4 1/2
giving my = [2i%, 437 890 025 028 %]T with all 72 of the normalised steady state probabilities of the
system derived from the back-substitution process displayed in Figure 2. We can see from the plot that the system
is in stateq2, 3,4) fori = 0,1,...,5 more often than the other states which is expected under a ‘pump to fill the
downstream dams’ transfer policy. Also there are high probabilities of being in jate®) for j = 0,1,...,1
andk = 0,1,...,m which indicates that the capture dam is often empty and is able to capture as much water as it
possibly can and minimise overflow — again a feature of the pump-to-fill policy.
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Figure 2. Steady state probabilities of a system with capacities2, m = 3 andn = 5 and input probabilities

Po=1%,p1=1%.p2=4%.p3 =15 ps = 355 andp] = 3 with the state ordering given by equation (1).

5. CONCLUSION

For a system of three connected dams modelled as a Markov chain the problem to solve for the invariant state
probability vectorx” = x” H is often of large dimension and difficult. Recognising a general pattern in the
transition matrixd the problem may be reduced significantly using Gaussian elimination to a similar problem
but of the order of the capacity of the capture dam and the remaining steady state probabilities calculated by a
back-substitution process.

A general process for the reduction of the problem has been described and even though a general formula for the
complete reduction has yet to be derived there are patterns emerging in the examples. Future work includes deriving
the general formula and the modelling and reduction of larger systems with variations to the input and release rules.
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