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Abstract: We consider a system of three connected dams consisting of a supply, storage and capture dam, with
capacitiesl, m andn, respectively. We assume a water management policy of a one unit supply from the supply
dam, a pump-to-fill transfer policy between the dams and a random input ofr units with probabilitypr into the
capture dam. We model the system as a discrete-time Markov chain with statesz = (z3, z2, z1) ∈ S wherez3 is
the discretised amount of water in the supply dam,z2 of the storage dam andz1 of the capture dam. Therefore we
have|S| = (l + 1)(m + 1)(n + 1). The transition matrixH ∈ R(l+1)(m+1)(n+1)×(l+1)(m+1)(n+1) for this policy
has the general block structure

H =



A ΣA Σ2A · · · Σl−2A Σl−1A Al

A ΣA Σ2A · · · Σl−2A Σl−1A Al

0 A ΣA · · · Σl−3A Σl−2A Al−1

...
...

...
...

...
...

...
0 0 0 · · · ΣA Σ2A A3

0 0 0 · · · A ΣA A2

0 0 0 · · · 0 A A1


whereA,Ai ∈ R(m+1)(n+1)×(m+1)(n+1) and also have a general block structure comprised of blocks of size
R(n+1)×(n+1), and whereΣ is a permutation matrix.

We denote the transient state probability vector asxT
(t) and since the transition matrix is irreducible the system

converges to a unique non-zero limiting probability distribution (or steady state probabilities)xT such that

xT
(t) = xT

(t−1)H = xT
(t−1) = xT ⇒ xT = xT H.

The task becomes to solvexT = xT H for x, a left eigenvector problem for the eigenvalueλ = 1. Due to the large
dimension ofH this task is often difficult and time-consuming. Therefore we consider a reduction technique to
reduce the problem to one of the order of the capacity of the capture dam.

Transforming the problem to(I − K)x = 0, whereK = HT , the task becomes to solve for the null space of
(I − K). We apply Gaussian elimination to the block structure of(I − K) and reduce the original eigenvector
problem to solve the significantly smaller null space problem

(I − Zm)πm = 0

whereZm ∈ R(n+1)×(n+1). The remaining elements of the invariant state probability vector are then evaluated by
the back-substitution process

πi = −Ziπi+1 and xj = −Xjxj+1

for i = m− 1,m− 2, . . . , 1, 0 andj = l − 1, l − 2, . . . , 1, 0.

We demonstrate the reduction technique with a small system and calculate the steady state probabilities in a numer-
ical example.

We have observed a pattern for the reduction but have yet to derive a general formula for the reduced problem.
Future work will also include modelling and reduction of larger, more complicated systems where the dimension
of the transition matrix becomes even greater and the steady state probabilities more difficult to calculate.
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1. INTRODUCTION

Motivated by the problems faced by the Snowy Mountain Authority in Australia, Moran (1954, 1959) first published
his work on the theory of dam storage. He considered a finite dam with random inputs and a regular demand and
described a method for evaluating the probability distribution of the amount of water stored in the dam.

More recently Piantadosi (2004) considered the case of two connected dams, a capture and supply dam, with a
regular demand of one unit from the supply dam and random inputs into the capture dam. Modelling the system as
a Markov chain she derived a transition probability matrix with a general block structure to solve for the invariant
state probability vector of the water stored in the dams. Using matrix reduction methods she proceeded to reduce
the size of the problem to one of the order of the capacity of the supply dam.

In a similar approach we consider a system of three connected dams with random inputs into the first, a regular
demand from the last and a pump-to-fill transfer policy and describe a general method for its reduction. The steady
state probabilities are derived from a back-substitution process and may then be used to evaluate the risks associated
with the system such as overflow and failure to satisfy the regular demand. An advantage of having the intermediate
dam is the progressive cleaning of the water as it is pumped across the system, allowing impurities to settle in the
dams.

We consider the first and intermediate dams as separate states, even though it may appear that we could combine
their contents as a single state as we are using the pump-to-fill policy. However, there are cases where these two
dams would not act like one larger dam, for example, when the input is large enough to overflow the first dam when
the intermediate dam is not completely full. Also, this approach will allow us to build on the model in the future to
consider extractions and inputs from the intermediate dam.

2. FORMULATION OF THE PROBLEM

We consider a system of three connected dams consisting of a supply, storage and capture dam with capacitiesl, m
andn, respectively, wherel < m < n. We assume a regular output of one unit from the supply dam at every stage,
a pump-to-fill water transfer policy between the dams and a random inputr into the capture dam. The general
system is shown in Figure 1.

Figure 1. System of 3 connected dams

We model the system as a discrete-time Markov chain (for example, see Ross (1996)) where each state is defined
asz = (z3, z2, z1) ∈ S (state space) wherez3 is the discretised amount of water in the supply dam,z2 the amount
in the storage dam andz1 the amount in the capture dam. Thus we have|S| = (l + 1)(m + 1)(n + 1) as the total
number of states. More precisely the state ordering is given by

S = {(0, 0, 0), (0, 0, 1), . . . , (0, 0, n), (0, 1, 0), (0, 1, 1), . . . , (0, 1, n), . . . , (0,m, 0), (0,m, 1), . . . , (0,m, n),
(1, 0, 0), (1, 0, 1), . . . , (1, 0, n), (1, 1, 0), (1, 1, 1), . . . , (1, 1, n), . . . , (1,m, 0), (1,m, 1), . . . , (1,m, n),
. . . , (l,m, 0), (l,m, 1), . . . , (l, m, n)} . (1)

Thepump-to-fill water transfer policy between the dams aims to transfer as much water as possible to the down-
stream dams in an effort to maximise supply and minimise overflow from the capture dam. The policy operates
with the following general rule: Suppose the amounts of water in the dams is given by statez = (z3, z2, z1) before
transferring water. The transfer amounts become

• first transferu3 = min [z2, l − z3] from the storage to the supply dam, and

• then transferu2 = min [z1,m− (z2 − u3)] from the capture to the storage dam.

Then the amounts of water in the dams after the transfers would bez′ = (z′3, z
′
2, z

′
1) where

z′3 = z3 + u3, z′2 = z2 − u3 + u2, and z′1 = z1 − u2.
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The probability thatr units of water enters the capture dam at a given stage is denoted bypr > 0. Also, we define
the probability of at leasts units entering the capture dam asp+

s =
∑∞

r=s pr. Note that we must have
∑∞

r=0 pr = 1.

To determine the transition probabilities we assume the following order of operations during a stage for the water
management policy of the system:

1. output of one unit from the supply dam if available

2. pump-to-fill transfers between the dams (as described above)

3. random input ofr units into the capture dam with probabilitypr.

With this water management policy and the state orderings given in equation (1) a general form of the stationary
transition probability matrixH ∈ R(l+1)(m+1)(n+1)×(l+1)(m+1)(n+1) may be derived with the following general
block structure

H =



A ΣA Σ2A · · · Σl−2A Σl−1A Al

A ΣA Σ2A · · · Σl−2A Σl−1A Al

0 A ΣA · · · Σl−3A Σl−2A Al−1

...
...

...
...

...
...

...
0 0 0 · · · ΣA Σ2A A3

0 0 0 · · · A ΣA A2

0 0 0 · · · 0 A A1


(2)

whereA,Σ, Ai ∈ R(m+1)(n+1)×(m+1)(n+1):

A =


P0 P1 · · · Pm−1 P+

m

0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0

 , Σ =


0 0 · · · 0 I
I 0 · · · 0 0
0 I · · · 0 0
...

...
...

...
...

0 0 · · · I 0

 , Ai =



0 0 · · · 0
...

...
...

0 0 · · · 0
P0 P1 · · · P+

m

0 P0 · · · P+
m−1

...
...

...
...

0 0 · · · P+
i


for i = 1, 2, . . . , l, and whereP0, Pj , P

+
k , R, I ∈ R(n+1)×(n+1):

P0 =


p0 p1 p2 · · · p+

n

0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

 , Pj = RjP0 for j = 1, 2, . . . , n

R =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0

 and P+
k =



0 0 · · · 0
...

...
...

p0 p1 · · · p+
n

0 p0 · · · p+
n−1

...
...

...
...

0 0 · · · p+
k


for k = 1, 2, . . . , n− 1.

We letxT
(t) ∈ R(l+1)(m+1)(n+1) denote the transient state probability vector at staget and is evaluated by

xT
(t) = xT

(t−1)H. (3)

Therefore we have

xT
(t) = xT

(t−1)H =
(
xT

(t−2)H
)

H = xT
(t−2)H

2

=
(
xT

(t−3)H
)

H2 = xT
(t−3)H

3

= · · · = xT
(0)H

t

wherexT
(0) denotes the probability of the initial state of the system.
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3. SOLUTION PROCEDURE

Due to the general structure of the transition matrix describing an irreducible Markov chain it follows that
limt→∞Ht exists and that the transient state probability vectorxT

(t) converges to a unique non-zero limiting prob-

ability distributionxT (also known as the invariant state probability vector, or steady state probabilities) (Ross,
1996). Hence we have the system converging when

xT
(t) = xT

(t−1)H = xT
(t−1) = xT .

Thus the problem becomes to solve
xT = xT H (4)

for xT , a left eigenvector problem with eigenvalueλ = 1, under the normalisationxT 1 = 1.

We may expand the definition of the invariant state probability vector to

xT =
[
xT

0 ,xT
1 , . . . ,xT

l

]
(5)

wherexT
i is the invariant state probability vector for the states(i, z2, z1), for z2 = 0, 1, . . . ,m andz1 = 0, 1, . . . , n.

WhenH is large then the problem in equation (4) becomes difficult and time-consuming to solve. We apply a
reduction technique to reduce the size of the problem fromR(l+1)(m+1)(n+1)×(l+1)(m+1)(n+1) to R(n+1)×(n+1).

3.1. Reduction procedure

We begin by transforming the problem to obtain

xT = xT H ⇔ x = HT x ⇔ (I −K)x = 0

whereK = HT and we letCi = PT
i andC+

i = (P+
i )T . The task now becomes to solve for the null space of

(I −K) to find the invariant state probability vectorx.

The matrix(I −K) may be divided intoJi,j blocks whereJi,j ∈ R(m+1)(n+1)×(m+1)(n+1) andi, j = 0, 1, . . . , l.
Therefore the problem(I −K)x = 0 may be written as

J0,0 J0,1 · · · J0,l

J1,0 J1,1 · · · J1,l

...
...

...
...

Jl,0 Jl,1 · · · Jl,l




x0

x1

...
xl

 =


0
0
...
0

 . (6)

We then systematically apply Gaussian elimination (for example, see Hill (1996)) to theJ-block structure in equa-
tion (6), using pre-multiplication of matrices, with the following general procedure to reduce(I − K) to block-
row-echelon form:

• make the diagonal elementsJi,i = I for i = 0, 1, . . . , l − 1, and

• make the elements under the diagonalJj,k = 0 for j > k andk 6= l.

Note that the elimination procedure requires inverting some key matrices of the form(I − B) whereB is a sub-
stochastic matrix, thus the inverse of(I −B) is well-defined such that(I −B)−1 =

∑∞
i=0 Bi exists.

Therefore(I −K) may be reduced to

I −K ∼



I X0 0 0 · · · 0
0 I X1 0 · · · 0
0 0 I X2 · · · 0
...

...
...

...
...

...
0 0 0 · · · I Xl−1

0 0 0 · · · 0 I −Xl


(7)

whereX0, Xi ∈ R(m+1)(n+1)×(m+1)(n+1) for i = 1, 2, . . . , l − 1 with only the first block-column consisting of
non-zero elements∈ R(n+1)×(n+1) of the form

X0,j = −Cj − αjC0 (8)
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for j = 0, 1, . . . ,m− 1 whereαj = pj

1−p0
and

X0,m = −Cm − αmC0 −
n−m−1∑

k=1

[Cm+k,k + αm+kC0,k]− Cn,n−m − α+
n C0,n−m (9)

whereα+
j =

p+
j

1−p0
and

Xi,j = −Cj − βi,j

(
piC0 + p+

i C1

)
(10)

whereβi,j = pj

p+
i (1−p1)−p0pi

, and

Xi,m = −Cm − βi,m

(
piC0 + p+

i C1

)
−

n−m−1∑
k=1

[
Cm+k,k + βi,m+k

(
piC0,k + p+

i C1,k

)]
−Cm,n−m − β+

i,n

(
piC0,n−m + p+

i C1,n−m

)
(11)

where β+
i,j =

p+
j

p+
i (1−p1)−p0pi

and the matrix Ci,j ∈ R(n+1)×(n+1) consists of the column vector

[p0, p1, . . . , pn−j−1, p
+
n−j ]

T afteri columns andj rows of zeros.

The problem is now reduced to solve
(I −Xl)xl = 0 (12)

for xl which is still quite large and difficult to solve. However, the reducedJl,l ∼ (I − Xl) can be treated as an
intermediate step in the reduction and may be reduced even further as described in the next section.

3.2. Further reduction

The reduced matrixJl,l ∼ I −Xl ∈ R(m+1)(n+1)×(m+1)(n+1) is comprised of blocks of the orderR(n+1)×(n+1)

and therefore we may apply Gaussian elimination to the block structure to reduce it even further to the form

I −Xl ∼


I Z0 0 · · · 0
0 I Z1 · · · 0
...

...
...

...
...

0 0 · · · I Zm−1

0 0 · · · 0 I − Zm

 (13)

whereZi ∈ R(n+1)×(n+1) and we propose they are of the formZi = −Ni

Di
C0 for i = 0, 1, . . . ,m − 1 and

Nj = Dj−1 andDj = (1 − p1)Nj − p0Gj for j = 1, 2, . . . ,m − 1 whereNi, Di, Gi ∈ R. Due to the general
structure of special matrices of the original transition probability matrix it follows that the reduced problem will
also have a general formula but has not been derived as yet though there appears to be a pattern emerging in the
examples.

If we definexT
l as

xT
l =

[
πT

0 ,πT
1 , . . . ,πT

m

]
(14)

whereπi ∈ R(n+1) we have the previous reduction in equation (12) reduced to the problem

(I − Zm)πm = 0. (15)

Since(I − K) is non-singular (as the solution to equation (4) forx is not trivial) it follows that(I − Zm) is
non-singular and a unique solution forπm exists.

3.3. Back-substitution process

Onceπm has been determined from solving equation (15) the remainingπi probabilities may be found by the
back-substitution process from the matrices in equation (13) with

πi = −Ziπi+1 (16)

for i = m− 1,m− 2, . . . , 1, 0 giving xT
l =

[
πT

0 ,πT
1 , . . . ,πT

m

]
. Then the remainingxj probabilities may also be

evaluated by the back-substitution process defined by the matrix in equation (7):

xj = −Xjxj+1 (17)

for j = l − 1, l − 2, . . . , 1, 0 to determine the invariant state probability vectorxT =
[
xT

0 ,xT
1 , . . . ,xT

l

]
.
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4. EXAMPLE l = 2, m = 3, n = 5

We consider a small example to illustrate our reduction procedure wherel = 2, m = 3 andn = 5. Then the
transition probability matrixH ∈ R72×72 is given by

H =

 A ΣA A2

A ΣA A2

0 A A1


where

A =


P0 P1 P2 P+

3

0 0 0 0
0 0 0 0
0 0 0 0

 , A2 =


0 0 0 0
0 0 0 0
P0 P1 P2 P+

3

0 P0 P1 P+
2

 , A1 =


0 0 0 0
P0 P1 P2 P+

3

0 P0 P1 P+
2

0 0 P0 P+
1


and some of thePi, P

+
i matrices are

P0 =


p0 p1 p2 p3 p4 p+

5

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 and P+
2 =


0 0 0 0 0 0
0 0 0 0 0 0
p0 p1 p2 p3 p4 p+

5

0 p0 p1 p2 p3 p+
4

0 0 p0 p1 p2 p+
3

0 0 0 p0 p1 p+
2

 .

Then, by Gaussian eliminationxT = xT H is reduced to

I −K ∼

 I X0 0
0 I X1

0 0 I −X2

 and I −X2 ∼


I Z0 0 0
0 I Z1 0
0 0 I Z2

0 0 0 I − Z3


where

X0 =


X0,1 0 0 0
X0,2 0 0 0
X0,3 0 0 0
X0,4 0 0 0

 , X1 =


X1,1 0 0 0
X1,2 0 0 0
X1,3 0 0 0
X1,4 0 0 0


as defined in equations (8), (9), (10), (11).

The finalZ-matrices are

Z0 = −N0

D0
C0

Z1 = − D0

(1− p1)D0 − p0G1
C0

Z2 = − (1− p1)D0 − p0G1

(1− p1)2D0 − p0(1− p1)G1 − p0G2
C0

whereN0 = p+
2 , D0 = p+

2 − p0p2, G1 = p0p3 + p1p2 andG2 = p2D0 + p0(p0p4 + p1p3 + p2p2), and

I − Z3 = I − C+
1 − 1

D2

{[
p2N2 + p0[p3D0 + p0(p0p

+
5 + p1p4 + p2p3 + p3p2)]

]
C0

+
[
p3N2 + p0[p4D0 + p0(p1p

+
5 + p2p4 + p3p3 + p4p2)]

]
C0,1

+
[
p4N2 + p0[p+

5 D0 + p0(p2p
+
5 + p3p4 + p4p3 + p+

5 p2)]
]
C0,2

+
[
p+
5 N2 + p0p0(p3p

+
5 + p4p

+
4 + p+

5 p+
3 )

]
C0,3

}
whereD2 = (1− p1)2D0 − p0(1− p1)G1 − p0G2 andN2 = (1− p1)D0 − p0G1.

Then the problem becomes to solve
(I − Z3)π3 = 0 (18)

of the orderR6×6 and to calculate the remaining invariant state probabilities by the back-substitution process
πi = −Ziπi+1 andxj = −Xjxj+1 for i = 2, 1, 0 andj = 1, 0.
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Consider a numerical example withp0 = 1
2 , p1 = 1

4 , p2 = 1
8 , p3 = 1

16 , p4 = 1
32 andp+

5 = 1
32 where the average

input is one unit, the same as the regular demand, and is hence a balanced system. Then to find the steady state
probabilities we must solve the null space of

I − Z3 ∼


3/4 −1/2 0 0 0 0
−1/4 3/4 −1/2 0 0 0

−49/240 −1/8 3/4 −1/2 0 0
−71/480 −1/16 −1/8 3/4 −1/2 0
−71/960 −1/32 −1/16 −1/8 3/4 −1/2
−71/960 −1/32 −1/16 −1/8 −1/4 1/2


giving π3 =

[
314
1275 , 157

425 , 690
1601 , 625

1378 , 625
1378 , 625

1378

]T
with all 72 of the normalised steady state probabilities of the

system derived from the back-substitution process displayed in Figure 2. We can see from the plot that the system
is in states(2, 3, i) for i = 0, 1, . . . , 5 more often than the other states which is expected under a ‘pump to fill the
downstream dams’ transfer policy. Also there are high probabilities of being in states(j, k, 0) for j = 0, 1, . . . , l
andk = 0, 1, . . . ,m which indicates that the capture dam is often empty and is able to capture as much water as it
possibly can and minimise overflow – again a feature of the pump-to-fill policy.

Figure 2.Steady state probabilities of a system with capacitiesl = 2, m = 3 andn = 5 and input probabilities
p0 = 1

2 , p1 = 1
4 , p2 = 1

8 , p3 = 1
16 , p4 = 1

32 andp+
5 = 1

32 with the state ordering given by equation (1).

5. CONCLUSION

For a system of three connected dams modelled as a Markov chain the problem to solve for the invariant state
probability vectorxT = xT H is often of large dimension and difficult. Recognising a general pattern in the
transition matrixH the problem may be reduced significantly using Gaussian elimination to a similar problem
but of the order of the capacity of the capture dam and the remaining steady state probabilities calculated by a
back-substitution process.

A general process for the reduction of the problem has been described and even though a general formula for the
complete reduction has yet to be derived there are patterns emerging in the examples. Future work includes deriving
the general formula and the modelling and reduction of larger systems with variations to the input and release rules.
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