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Abstract:   Precipitating weather systems have life cycles involving formation, evolution, and decay. These 
systems can translate across spatial regions spanning 1000's of km. Climate scientists, numerical modelers, 
and operational hydro-meteorologists are especially interested in understanding how the characteristics of 
precipitation systems change over space and time. For example, a topic of current interest is whether global 
climate change can be observed in the changing characteristics of precipitating weather systems.  

In addition, there are many outstanding questions regarding the ability of numerical weather prediction 
systems to predict realistic weather events that translate and evolve over time and space that could be 
addressed with appropriate forecast evaluation methods.  For example, do state-of-the-art numerical weather 
prediction models accurately predict temporal changes in the morphological characteristics of convective 
precipitation systems?  In order to answer these types of questions, automated techniques of identifying and 
tracking individual weather systems must be developed and applied to forecast and observed data, and 
methods of comparing forecasts and observations of time-varying features must be developed. 

This paper will focus on the problem of developing a framework for the comparison of meteorological 
features that evolve with time.  Since weather systems typically evolve and translate in space and time, 
explicit analysis of their characteristics requires a feature-based or “object-oriented” approach. Such an 
approach involves identification of the precipitating weather system of interest and measurement of 
appropriate characteristics of each system.  Individual systems within the forecast and observed data must be 
tracked over time, which involves issues of determining the beginning and ending of specific events.  Issues 
related to comparing predicted and observed weather events must also be addressed, as well as the problem 
of comparing forecast and observed events with unequal lifetimes. 

Keywords: Numerical weather prediction, forecast verification, image processing, quantitative precipitation 
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1. INTRODUCTION 

The development of meaningful, objective methods for verifying numerical predictions of spatial fields that 
contain realistic detail which also satisfy the needs of a diverse user community continues to be a difficult 
issue. Realistic spatial fields of meteorological variables such as precipitation and clouds contain a great deal 
of structure and variability across a wide range of spatial and temporal scales.  Traditional measures of 
accuracy which directly compare predicted and observed values of these highly-variable fields tend to 
produce very large errors given even slightly imperfect forecasts.  Since displacement errors in weather 
forecasts are to be expected, a forecast containing realistic structure will likely produce the so-called “double 
penalty” effect on traditional scores (e.g., heavy rain predicted where no rain was observed and no rain 
predicted where heavy rain was observed).  Such scores typically do not provide very useful information 
regarding the performance and value of these kinds of forecasts (e.g., Davis et al. 2006; Keil and Craig 
2007).   

Recent research in this area has primarily focused on methods of evaluating the “realism” of forecasts, 
generally following suggestions made by Anthes (1983).  A recent review of this type of work was presented 
by Casati et al. (2008).  The newer methods can be generally classified into four categories: optical flow, 
neighborhood-based, scale-decomposition, and feature-based approaches.  Optical flow methods (e.g., Keil 
and Craig 2007) involve distorting the spatial forecast field to closely match the observed field and 
determining errors in displacement, amplitude, and shape/structure as a result.  Neighborhood-based methods 
(e.g., Atger 2001; Roberts and Lean 2008) relax the requirement of matching the exact spatial and/or 
temporal location of forecasts and observations, giving credit for forecasts that are “close” or nearby in space 
and time.  Scale-decomposition methods (e.g., Briggs and Levine 1997; Zepeda-Arce et al. 2000; Casati et al. 
2004) examine forecast errors as a function of spatial scale.  Feature-based methods compare predicted and 
observed characteristics of specific meteorological phenomena, and are often called “object-oriented” 
approaches (e.g., Ebert and McBride 2000; Nachamkin 2004; Davis et al. 2006).  For purposes of forecast 
verification, the terms feature, event, object, and entity have been used interchangeably.   “Objects” are 
considered here in much the same way as they are in cluster analysis, which is the systematic approach of 
combining individual objects into groups based on their similarity.  It is the general category of “object-
oriented” methods that will be the focus of this paper. 

One common characteristic that these recent methods generally share is that predicted and observed fields 
valid at the same single snapshot in time are compared in order to evaluate the performance of forecast 
systems.  Feature-based verification methods identify “objects” in spatial fields (forecast and observed 
separately) typically by locating contiguous regions of variable values greater than a specified threshold 
(such as 1h precipitation greater than 5mm).  Attributes for each object that describe relevant characteristics 
of each object, such as their location, intensity, and size are then determined.  Where forecast and observed 
objects are simultaneously found close enough together to be considered “matching”, attributes of forecast 
objects are compared to those from objects observed at the same snapshot in time.  This allows for the 
analysis of the distribution of errors in specific aspects of the spatial forecasts, such as location errors.  
However, what is typically not considered by these methods is the time evolution of the predicted and 
observed objects. 

There are many interesting questions related to the performance of weather prediction systems that contain 
realistic meteorological features that move and evolve over time that could be addressed with suitable 
verification techniques.  For example, does a numerical prediction system have a bias in forecasts of the 
lifetime of convective systems?  Do numerical models predict the average speed of certain classes of 
precipitating weather systems better than other classes?   In order to answer these kinds of questions, 
automated techniques of time tracking of weather systems must be applied to forecast and observed fields, 
and methods of verifying forecasts of time-varying features must be developed.   

There are several methods available to track features in meteorological data over time.  These have been 
developed for short-term forecasting of convective storms (“nowcasting”) based on radar data (e.g., Dixon 
and Wiener 1993; Johnson et al. 1998; Wilson et al. 1998) as well as tracking of cyclones in climate analyses 
and numerical weather prediction output (e.g., Hodges 1995).  While the development of robust methods of 
tracking features in meteorological data over time is a topic of great interest, it is also important to develop a 
general verification framework that can utilize information obtained from any feature tracking algorithm.  
This paper will focus on the problem of developing a framework for the comparison of feature attributes that 
evolve over time.   
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2. VERIFICATION FRAMEWORK 

It is upon the well-developed framework for verification of Murphy and Winkler (1987) that any new 
verification technique should be built.  This general framework involves analysis of the joint distribution of 
forecasts and observations.  While Murphy and Winkler (1987) did not explicitly consider the verification of 
meteorological features that evolve with time, their framework does provide the foundation for the 
verification of time-varying features.  A more specific framework for feature-tracking verification involves 
four basic steps: feature identification, characterization, tracking, and comparison.  In the first step of this 
process, specific meteorological features must be located and identified using multivariate data.  Criteria for 
object identification will vary depending upon the phenomena of interest.  Routines for identifying objects 
should not be a function of both the observed and predicted data, for example, the definition of an observed 
object should be independent of the forecast data.  Otherwise, the same set of observed data will result in 
different observed objects being defined for different forecast systems, making comparative verification 
infeasible.  In this work, the meteorological phenomena of interest are precipitating weather systems.  The 
automated procedure for identifying such precipitation systems is based on the contiguous rain area method 
developed by Ebert and McBride (2000), where connected regions of precipitation greater than some 
threshold are identified as separate features (Baldwin et al. 2005). 

After the features have been identified within the forecast and observed fields, the characteristics of those 
objects must be extracted in order to provide a useful description of each object.  A set of attributes that can 
describe the most important and discriminating aspects of an object at a particular instant in time must be 
collected.   For example, the ith object would be described by a vector of dimension m that contains attributes 
describing that object.  These attributes could be associated with the spatial location (perhaps latitude and 
longitude) and other meteorological and morphological characteristics (size, amplitude, orientation, structure, 
continuity) relevant to the phenomena of interest.  Figure 1 shows an example of the results of simple object 
identification and characterization procedures using a numerical prediction of radar reflectivity.  The object 
identification procedure of Baldwin et al. (2005) is used with a 40 dBZ radar reflectivity threshold to produce 
the numbered objects in the right-hand panel of Figure 1.  Contiguous regions of reflectivity greater than 40 
dBZ are labeled.  Attributes related to the location, size, and intensity of these precipitation objects are also 
collected.  In this example, object #63 is located at 36.02° N, 263.61°E, is 612 km2 in size, a mean value of 
reflectivity of 48 dBZ and a maximum value of 56 dBZ.  Figure 2 shows the results from a similar analysis 
using the observed radar reflectivity data valid at the same time (+/- 2 minutes).  In the observed data, object 
#8 is located at 35.75°N, 263.66°E, is 702 km2 in size, a mean value of reflectivity of 47 dBZ, and a max 
reflectivity value of 58 dBZ.  In this example, the forecast generally produces a spatial field that contains 
realistic-looking structure, except with some displacement error.  This could also be a displacement in the 
temporal evolution of the precipitation systems, since the forecast generally initiated precipitation 1-2h later 
than what was observed in this particular example. 

  

Figure 1. Example of object identification from a single snapshot in time.  Left panel, 25h forecast of simulated 
radar reflecitivity (1km above ground level) from a 4.25km WRF model forecast valid 0100 UTC 06 Nov 2008 
using the Purdue WRF configuration.  Right panel, objects identified using modified Baldwin et al. (2005) 
algorithm and 40 dBZ threshold. Object #63 is circled in both panels. (NCEP NAM initial and boundary 
conditions, 45 vertical levels, Purdue Lin microphysics, YSU turbulence, RRTM/Dudhia radiation, NOAH land-
surface model 25s timestep, see http://wxp.eas.purdue.edu/wrfdata/) 
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Figure 2. Example of object identification from observed radar data.  Left panel, radar reflecitivity (lowest 
elevation angle) remapped to the identical 4.25km grid as in the WRF forecast data (valid 0101 UTC 06 Nov 2008).  
Right panel, objects identified using modified Baldwin et al. (2005) algorithm and 40 dBZ threshold. Object #8 is 
circled in both panels. 

3. TIME EVOLUTION 

A feature tracking algorithm typically takes objects that have been identified and characterized separately at 
discrete snapshots in time and “connects” similar objects from one time to the next.  This is commonly 
referred to as the data association problem.  In general, this procedure is similar to that followed in cluster 
analysis algorithms, where individual objects are connected based upon their similarity.  One can choose 
from a wide variety of measures of similarity/dissimilarity in order to perform this task (e.g., Romesburg 
1984).  Measures of similarity between objects establish the degree of “closeness” between two objects. At 
each snapshot in time, each object is described by a vector of size m containing the attribute values 
corresponding to that object.  Conceptually, one can measure the degree of difference between two objects 
via some measure of the size (or norm) of the vector that is created by subtracting the two attribute vectors 
associated with those two objects.  For example, the so-called generalized Euclidean distance (Carroll and 
Wish 1974)  

  dAij = [(obji - objj)
T A (obji - objj)]

1/2       (1) 

is the square root of the weighted inner product of the difference between attribute vectors associated with 
two objects (obji and objj).  For this distance measure to meet the qualifications of a distance metric, the 
weight matrix A must be a positive-definite symmetric matrix.  The use of the weight matrix allows one to 
weigh certain attributes more heavily than others, or to account for differences in the units between attributes.  
When the identity matrix is used for the weight matrix, the familiar Euclidean distance is obtained (which is 
used in this work).   

There are numerous feature-tracking procedures currently in use for tracking convective storms in radar and 
satellite data (e.g., Lakshmanan et al. 2003; Morel and Senesi 2002; Storlie et al. 2009) as well as tropical 
and extra-tropical cyclones in global weather prediction and climate analysis products (e.g., Bengtsson et al. 
2006; Froude et al. 2007).  The choice of tracking algorithm will depend upon the phenomena of interest, and 
different algorithms will produce different results.  For example, Joe et al. (2004) compared several 
nowcasting algorithms that were used as part of the Sydney 2000 Forecast Demonstration Project (FDP) to 
evaluate the utility of these routines.  The various algorithms produced vastly different numbers of storm 
tracks depending on the threshold used to identify convective cells in the radar data as well as radar scan 
times.  Ebert et al. (2004) verified the performance of the short-term forecasts from these FDP nowcast 
algorithms and decided to evaluate each algorithm individually, not comparing results from different 
algorithms due to the numerous differences in their operation.  Regardless of which time-tracking algorithm 
is selected, the results of that algorithm should provide summary information about relevant attributes for 
each feature across the lifetime of that feature.  We can assume that the ith feature would be described by a 
vector of dimension nm ×  that contains m attributes describing that object over n separate snapshots in time. 
The first index of the time attribute indicates the initial time of the feature, and the nth index of the time 
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attribute indicates the last time that the feature could be detected in the data.  Therefore, each of the m 
attributes will contain n specific values indicating how those attributes changed during the lifetime of the 
feature, whether those attributes are related to the spatial location or other meteorological and morphological 
characteristics relevant to the phenomena of interest. 

As an example, Figure 3 displays the results of a simple object tracking algorithm (Baldwin and Carley 
2009).  With this procedure, the attributes of each object identified at time = t are compared to every object 
identified at t = t+ Δt (where Δt = 10 min in the forecast data and ~5 min in the observed data) using a 
Euclidean distance metric.  The attribute vector contains information regarding location, size, and intensity 
characteristics.  Since these attributes posses different units and ranges of values, they must be standardized 
to allow vector calculations such as a Euclidean distance measure.  In this example, the standardization was a 
simple normalization where the minimum value of each attribute was subtracted and then the result was 
divided by the range (determined by a small sample data set consisting of a single 36h period), such that each 
attribute varies between 0.0 and 1.0.  The location attributes were weighted such that a 125km distance would 
relate to a 1.0 difference in normalized attribute space.  The resulting “distance” between objects considers 
not only their spatial separation, but also differences between intensity and size characteristics.  Therefore, 
objects are considered similar if all of their attributes are similar.  The feature tracking procedure is often 
complicated by the fact that meteorological features (such as convective storms) can appear or disappear at 
any particular instant in time (“birth” and “death”).   An object at time = t is connected or associated with an 
object at time = t + Δt if the Euclidean distance between them was less than a specified threshold.   In this 
example, the threshold was determined by analyzing the cumulative distribution of between-object distances 
computed for simultaneous images from a single sample dataset (36h period).  This threshold is one where 
greater than 99% of simultaneous objects would be considered separate.  In this example, the example 
forecast object #63 from Figure 1 could be tracked for ~2h, and had a track of length = 150 km.  The example 
observed object #8 from Figure 2 could be tracked for 96 min and had a track length of 90 km.  The relevant 
attributes for each feature can be tracked and recorded over time. 

In this example, comparing the distribution of forecast and observed tracks over the 36h period of this 
forecast shows that the forecast produced a reasonably realistic prediction of the overall time evolution of 
many of the individual convective features that were observed in the radar data.  The forecast missed several 
of the features in the west-central portion of Oklahoma, mainly due to the fact that it initiated storms later in 
the day than what was observed for this particular case. 

  

  

Figure 3. Results of a simple object tracking algorithm (Baldwin and Carley 2009).  The Euclidean distance 
between objects at successive time intervals are computed using normalized location, size, and intensity attributes.  
Objects between successive output times (forecast = 10 min, observed ~ 5 min) that are closer than a given 
threshold are connected.  Circles indicate the initial location of a feature and squares indicate the final location of 
a feature.  The time-track for the example object #63 from Figure 1 is highlighted in the left hand panel, and the 
track for the example object #8 from Figure 2 is highlighted in the right hand panel. 

WRF 36h forecast 36h observed radar 
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4. VERIFICATION OF FEATURES THAT EVOLVE OVER TIME 

To this point, the steps in feature tracking verification have involved separate analysis of the numerical 
forecast information and observational data.  Those wishing to follow the general verification framework of 
Murphy and Winkler (1987) should analyze the distributions of forecast and observed attributes (e.g., Davis 
et al. 2006) along with the joint distribution of forecast and observed attributes of features that can be paired 
in time and space.  In order to analyze the joint distribution of forecast and observed attributes, one must pair 
up “matching” features in the predicted and observed datasets.  This comparison step shares many common 
issues with the data association/time tracking step discussed previously.  For example, we may want to 
measure the multi-variate Euclidean distance between the ith forecast attribute vector (fi) and the jth observed 
attribute vector (oj).  Euclidean distance between these two features would be defined as dij = [(fi - oj)

T (fi - 
oj)]

1/2.  Once the similarity measure has been chosen, overall summary verification scores or accuracy 
measures could then be obtained.  The Euclidean distance between a forecast feature and all observed 
features can be calculated, those forecast/observed feature that are closer in multi-variate distance than some 
specified threshold can be paired.  Attributes of paired sets of forecast/observed features can be directly 
compared using the joint distribution approach or by computing a series of “measures-oriented” statistics.   
Forecast features that remain unpaired with any observed feature can then be considered “false alarms” and 
observed features that remain unpaired with any forecast feature can be considered “missed events”. 

This approach relies on the forecast and observed feature attribute vectors being of identical size.  This is not 
a problem if one is comparing forecast and observed features obtained from snapshots (not considering time 
evolution, attribute vector length = m).  However, if one is comparing attribute vectors that vary with time, 
the length of attribute vectors will be nm × , where n will be equal to the age of the feature in units of time-
steps.  Forecast and observed attribute vectors cannot be compared if they are of different sizes.  The 
challenge is to develop attribute vectors of a fixed length that contain enough information to describe the 
complete time evolution of objects of interest.  For comparison purposes, one could compute a time-
evolution attribute vector that contains a set of summary statistics describing how the location, intensity, 
morphological, and meteorological attributes vary with time.  For example, the attribute vector that is used in 
this preliminary work consists of the time, size, location, and intensity-related attributes at the beginning and 
ending of the track of the system, the average size, location, and intensity, and the maximum size/intensity 
attributes.   

5. CONCLUSIONS 

There are mainly outstanding issues that must be resolved before a robust verification system can be 
implemented that provides useful information regarding the time evolution of weather systems.  For instance, 
the object identification procedure is quite sensitive to the choice of threshold, and has a great impact on the 
resulting system size.  One may be interested in measuring the performance of a forecast system in predicting 
fine-scale meteorological features, in this case, a relatively large reflectivity threshold (such as the one used 
here) will be appropriate.  However, in many cases, it will likely prove very difficult for numerical models to 
match similar features in the observed data for small-scale features.  A lower threshold will cluster the small-
scale features that are located within a larger-scale precipitation system into a “composite” system, which 
may be easier to track and match in the forecast data.  The dimensionality of the verification problem 
increases tremendously with the addition of time-evolving information.  Regarding the Euclidean distance 
calculations, ideally one would prefer to use a long-term climatology to normalize the object attributes.  This 
will certainly require extensive analysis in order to obtain such a feature-based climatology.  This ongoing 
work is in its preliminary stage, and examples of this numerical forecast verification approach using high-
resolution numerical forecasts and observed radar data will be presented at the conference. 
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