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Abstract: Computational models have long been used to support decision making in water management. 
With growth in the availability of data and plummeting cost of computation, the way these models are 
deployed is changing. Single simulations for “best estimate” conditions are giving way to the use of multi-
run computational experiments as exemplified by risk, uncertainty and sensitivity analysis. In this paper we 
look beyond these techniques to a new generation of tools. Building on simulation and risk analysis, these 
tools will enable systematic, quantitative decision analysis, allowing the merits of sets of options to be 
examined and compared, according to a variety of metrics and under a range of possible future conditions.  

We outline a conceptual framework for decision analysis 
for strategic planning. The life cycle of flood defence 
assets lasts 100 to 150 years, and option appraisal must 
encompass this cycle. The many processes that will 
influence the state of the system on this time scale must be 
explicitly represented, allowing for the considerable 
uncertainties involved.  

The approach described is novel in a number of respects, 
among which the following stand out. 

 Processes of long term change, including the 
implementation of management interventions, are 
simulated. System states at future times are calculated 
conditional upon a simulated future, not manually 
assembled. 

 The costing of interventions and options (timed sets of 
interventions) is integrated into the framework. Costs 
can be a function of system state at the time of 
implementation of the intervention, and can therefore be influenced by long term change processes and 
uncertainty. 

 The assessment of option benefits and costs is integrated and the results combined into measures of 
option performance. This makes it possible to ensure that performance estimates are based on internally 
consistent scenarios and account for dependence between variables influencing costs and benefits. 

 Computational experiments such as uncertainty and sensitivity analysis are applied to the overall 
performance analysis rather than its component parts, leading to information of greater value to decision 
makers.  

We describe an implementation of this framework in the context of a simple flood risk management situation. 
The performance metric used is Net Present Value of reduction in Expected Annual Damage. Processes of 
long term change include increasing relative mean sea level and increasing damage potential resulting from 
economic growth. In both cases the rates of increase are uncertain, as are the costs of implementing the 
interventions from which options are constructed. These various uncertainties are expressed as probability 
density functions (PDFs) over the variables in question. They are propagated through to option performance 
by means of a Monte Carlo experiment, allowing a PDF on performance to be constructed for each option 
(figure 1). A range of additional diagnostic outputs can also be generated. 
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Figure 1 Probability density over Net 
Present Value of reduction in Expected 

Annual Damage for each option 
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1. INTRODUCTION 

The planning and implementation of strategic flood risk management interventions can take decades, and the 
investments involved must be justified using cost benefit analysis over an appraisal period that encompasses 
the design life of the resulting infrastructure. This leads to the desire to evaluate management options in 
terms of their return on investment over periods of a century or more. Climate, the economy and demography 
are but some of the more obvious sources of change that will influence estimates of flood risk on this time 
scale.  

At the same time, ever more data are available to flood risk managers, at least in countries like the UK. 
Computing resources are similarly ever more abundant. The question then arises of how this “embarrassment 
of riches” might be converted into useful knowledge relevant to the problem of strategic decision making.  

Some steps in this direction have already been taken. “Risk analysis” – which involves the estimation of the 
statistical expectation of annual damage, EAD, using a damage model and a joint probability density function 
over the inputs to that model – is now a standard part of the flood risk management toolbox in the UK (Hall 
et al., 2003; Dawson, 2003; Hall et al., 2005). Uncertainty propagation and sensitivity analysis methods have 
been applied to explore the influence of uncertainty on estimates of EAD (Environment Agency, 2009).  

In this paper we argue that these developments represent first steps in a process, the logical conclusion of 
which is systematic decision analysis. This goes beyond the status quo of modelling and risk analysis in a 
number of respects, the most important of which are itemised in the abstract. We present a simple but general 
conceptual framework for decision analysis and illustrate its application to a simplified but representative 
strategic flood risk management decision.  

 

Figure 2 Overview of a conceptual framework for decision analysis. Larger boxes indicate the nested 
structure of the analysis. The computation itself follows the directed bipartite graph flowing from left to right. 

Unboxed nodes are data sets, while boxed nodes are transformations, where s stands for “sample”, m for 
“mean” and q for “estimate quantiles”. The dimensions of data sets are indicated by characters in square 

brackets beneath; these are epistemic uncertainty (e) cases (c), options (o), time (t), aleatory uncertainty (a), 
cumulative probability level (p). 

2. CONCEPTUAL FRAMEWORK 

Figure 2 sets out the conceptual framework. It consists of five nested layers of analysis, as indicated by the 
nested boxes, each of which is labelled in the upper right hand corner. One way of thinking about the analysis 
is to consider these boxes as representing the nested loops of a naïve, sequential implementation. 

1. Evaluate damage using a deterministic model of the damage caused by a specific hydrological event. 
2. Estimate Expected Annual Damage (EAD), commonly referred to as “risk”. This involves many 

invocations of the layer 1 damage estimator. 
3. Simulate long-term change, generating system states and costs. For each state, estimate EAD by 

invoking level 2. A possible future is specified as an initial system state, an option (a timed 
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sequence of flood risk management interventions) and a set of parameters to a model of relevant 
long-term time-dependent processes (sea level rise, demographics, …). 

4. Evaluate option performance. The layer 3 computation is conducted for each of a set of cases, 
including a “do nothing” base case and a number of “do something” options. For each option, a 
performance metric is evaluated by comparison of the base case EAD with the residual EAD 
associated with each option.  

5. Apply computational experiments to performance estimator. Computational experiments can be used 
to explore the behaviour of the layer 4 performance estimator. 

Layers 1 – 4 define a deterministic estimator of option performance. The integration of risk analysis and cost 
estimation in the context of simulation of long term change processes is novel and powerful. It is possible in 
this framework to ensure that costs and benefits are assessed coherently, for example in how they are 
influenced by uncertainty about future economic growth. 

Given this estimator, some familiar techniques and algorithms take on a new significance. Parameter 
uncertainty can be propagated all the way through to the performance metrics of direct interest to decision 
makers, as described in section 3. Sensitivity analysis can be used to rank input parameters in terms of their 
contribution to uncertainty on performance of options. Thus we can explore the influence of uncertainty on 
our ability to rank options; our ability to make a decision.  

We can also design experiments to answer less familiar questions. For example, Hall and Harvey (2009) 
present an experimental Info-Gap (Ben-Haim, 2006) robustness analysis structured according to the 
framework described here. An option has the property of robustness if its performance does not deteriorate 
rapidly as conditions deviate from those of the “best estimate”. When a decision must be made under 
considerable uncertainty, a robust option may be preferred to one that is less robust even if the latter has 
considerably better performance under best estimate conditions. 

The fact that options are represented explicitly and separately from other aspects of long term change opens 
the possibility of using search and optimisation algorithms to explore the space of possible options.  

3. EXAMPLE MODEL 

3.1. Flooding system and damage 
estimation 

The decision analysis framework assumes the 
availability of an implementation in software of a 
damage estimating function d(s, e) , where the 
vector s  is a description of system state and e  of 
an event. This function d  will usually be an 
integration of several component models. In the 
case of flood risk analysis, these include models of 
river hydraulics, defence reliability, flood 
inundation and damage generation.  

For the purposes of demonstration a simplistic 
damage model is used in this example, but one that 
nonetheless implements the basic structure of the 
Risk Assessment for Strategic Planning 
methodology used by the UK Environment Agency (see e.g. Hall et al., 2003; Gouldby et al., 2008). A 
hypothetical situation is considered, in which an area of low lying coastal land is separated from the sea by a 
single flood defence. Tidal events are defined by the peak surge tide water level, with a standard local 
hydrograph shape being assumed. An event may result in inundation by overtopping the defence or if the 
defence is breached. In either case it is assumed that the defence acts as a weir, so the total volume 
discharged into the floodplain during the tidal cycle can be estimated using the weir equation. Breach 
dimensions are estimated using simple rules. The volume discharged is used to estimate a water depth in the 
floodplain, from which damage is estimated from depth using a depth-damage curve capturing information 
about the type and density of buildings in the floodplain (Penning-Rowsell et al., 2005). The probability of 
breaching is estimated conditional on event maximum water level and used to find en event expected damage 
by taking a probability-weighted sum of damages associated with the breached and overtopped cases. 

Table 1 System state variables 
Variable D R C 

Parameters to max sea level distribution  *  

Defence crest level *  * 

Ground level at defence *   

Defence condition *  * 

Damage potential *   

Upgrade cost factor   * 

Repair cost factor   * 
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In the case of this simple example, the system state vector s  contains the data indicated in table 1. The 
variables indicated in the column headed “D” are used in damage estimation. 

3.2. Risk analysis 

In the example analysis, an event is a tidal cycle, defined by the maximum water level reached at the defence, 
a standard hydrograph shape being assumed. The probability density function over annual maximum water 
level e  is given by p(s, e) . The parameters to this distribution are also part of the system state vector (entries 

marked in column “R” in table 1). 

Given this function and an assumption that only the damage generated by the most extreme tide in a given 
year is significant, the Expected Annual Damage (EAD) or “risk” r(s)  is given by equation 1, which also 

indicates that the risk can be estimated using Monte Carlo integration, where ei  is the ith member of an n-

member sample from the distribution p(s, e) . 

r(s)  d(s, e)p(s, e)de 
1

N
d(s, ei )

i1

n

  
(1) 

3.3. Option performance 

We evaluate options according to the Net Present Value (NPV) of the reduction in EAD they generate 
relative to a “do nothing” base case as a performance measure. Allowing that the system state will change in 
time, we wish to compare options consisting of sequences of intentional modifications to the system. 
Considering an appraisal period of m years, the NPV of case c, gc , is given by equation 2 in which sc,y  is the 

system state in year y for case c and d is the discount factor. Case c=0 is the base case.  

gc 
1

(1 d)y r(sc,y )  r(s0,y )  c(sc,y ) 
y0

m1

  
(2) 

4. LONG TERM CHANGE 

In order to implement the analysis described in the previous section it is necessary to generate the system 
state vectors sc,y . Even in a deterministic analysis taking no account of uncertainty there could be a large 

number of these. Constructing them by manual modification of a base system description is time consuming, 
error prone and cannot readily be repeated. One of the novelties of the approach described here is the 
generation of these state vectors by simulating the evolution of system state through appraisal time. In 
addition to the advantages noted, this approach means that the model of change captures explicitly and 
formally the assumptions about long-term change made in an analysis. 

We separate the sources of changes to 
system state according to whether they are 
the result of intentional intervention in the 
interests of flood risk management or of 
processes, which we refer to as exogenous, 
over which the management system exerts 
no control. We consider the latter in this 
section. Changes resulting from 
intervention are discussed in the next 
section.  

In the context of strategic flood risk 
management, typical exogenous change 
processes include increasing relative mean sea level, changes in the frequency of extreme rainfall, subsidence 
leading to reducing defence crest levels, defence deterioration, economic growth (or otherwise) as it affects 
the value of assets at risk from flooding, and land use change including population and demographic change.  

Of these, in the example we consider sea level rise, defence deterioration and economic growth. Error! 
Reference source not found. presents the parameters to the overall model of long-term change, the model of 
change controlled by each parameter and the system state variables which are influenced by these change 

Table 2 Long-term change model 
Variable State variables 

influenced 
Change model 

Rate of sea level 
rise 

Sea level distrib-
ution parameters 

Constant rate 

Rate of economic 
growth 

Damage potential Constant rate, 
compound 

Rate of 
deterioration 

Defence condition Constant rate, 
bounded 
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processes. Mean sea level is assumed to increase at a constant annual rate. Defence condition is indicated by 
a condition grade lying between 1 (perfect) and 5, and deterioration is defined in terms of the number of 
years it takes for the defence to drop a condition grade. Economic growth, which is assumed to lead to an 
increase in damage potential as the residents of the floodplain accumulate more valuable possessions, is taken 
to compound annually at a constant rate. The uncertainty in these assumptions can be analysed in the outer-
most level of analysis.  

5. INTERVENTIONS AND OPTIONS 

In addition to exogenous change we consider 
interventions, changes made to the system 
intentionally. Examples of interventions for flood 
risk management include building new defences or 
raising crest levels of existing defences, repair and 
maintenance of infrastructure, construction of a 
tide-excluding barrier or flow-limiting barrage. 
These are examples of “hard engineering” 
interventions, designed to reduce the probability of flooding. Other interventions focus on reducing the 
impact of flooding that does occur: flood proofing of residential property, creation and enforcement of 
planning regulations and so on. 

It is the purpose of the decision making process to generate a range of options, to evaluate these, and 
ultimately to select one for implementation. Options are sets of interventions, each applied at a particular 
point in time. At present options are specified manually, but, because they are explicitly represented, they 
could also be generated in software. Future development will explore the use of rules to generate options 
during simulation of long term change, for example allowing defence crest levels to be chosen within 
particular runs based on observed rates of sea level rise.  

Interventions are modelled as pairs of functions. The first takes a system state vector describing the state of 
the system before the intervention is applied, and returns a state vector describing that system modified by 
the application of the intervention. The second takes the pre-intervention state vector and returns the cost of 
implementing the intervention in the context of that state. Intervention costs can in this way depend on any 
system state variables. These may denote physical characteristics of the system, such as the existing crest 
level of a defence being raised, or parameters to a cost model encapsulating the costs of materials and labour. 
Variables in table 1 marked “C” are used in intervention costing. 

The example makes use of two intervention types. These are both applied to the single flood defence in the 
system. In both cases, the constant of proportionality in the cost model is part of the system state, and can be 
subject to long term change and uncertainty. 

 Repair (“R”) returns defence condition to its maximum (1), representing the effects of remediation works. 
The cost of repairing a defence is assumed to be proportional to the difference between maximum 
condition and actual condition prior to repair.  

 Raise crest level (upgrade) by x m (“U(x)”). Note that this provides a parameterised family of 
interventions. It is assumed that the work involved in raising crest level brings the defence up to 
maximum condition as a side effect. The cost of raising defence crest level is taken as proportional to the 
square of the difference between new and old crest levels.  

The cases considered in the example are shown in table 3. In the example, interventions are applied on 
decadal boundaries. The appraisal period runs from 2010 to 2110. Case 0 is a “do nothing” base case, while 
cases 1–3 are the options we wish to consider. 

6. EXAMPLE EXPERIMENT: UNCERTAINTY ANALYSIS 

A traditional approach to engineering decision making would assume stationary climate and vulnerability and 
compute Net Present Value based on best estimate values for state variables. This can readily be recreated in 
terms of the estimator set out above by setting the rates of change for the exogenous change model to 0. 
Having implemented the analysis steps described above in a software device in such a way that the 
calculation of NPV for a set of options can be conducted from input data fully automatically (that is, without 
further manual intervention), however, it becomes possible to subject this device to all manner of 
computational experiments.  

Table 3 Specification of cases as combinations of 
defence repairs (R) and upgrading of crest level (U) 

Case 2010 2030 2050 2070 2090 2110 

0       

1 R U(5.5) R R R  

2 R R R U(5.5) R  

3 R R R R R  
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Such experiments have the general form that some, possibly large, set of input parameter vectors are 
generated, performance of each option is estimated for each member of that set, and the results are reduced to 
summary statistics. These are then usually presented graphically. For this example, a simple Monte Carlo 
uncertainty propagation experiment was applied. We assume that input uncertainties are specified as 
probability density functions (PDFs), which are sampled and propagated. We can then estimate a PDF on 
performance of each option, indicating the quality of our estimate. 

7. IMPLEMENTATION 

A naïve implementation in a sequential programming language of the decision analysis calculation described 
would translate the layers described in section 2 into nested loops. Only as many intermediate results would 
be stored as necessary to complete the generation of the final result. We take a different approach. Our 
implementation is based on the Reframe metamodel (Harvey et al., 2008), wherein analysis is specified as a 
sequence of transformations of multi-dimensional data sets with named dimensions. From this perspective, 
the calculation proceeds as indicated in the directed bipartite graph passing from left to right in figure 2. 

The labels of data sets and transformations are specific to the example described above, particularly in 
respect of the performance metric (NPV) and associated intermediate data sets. The conceptual framework is 
general, however. Our aim is to construct a software tool that allows a variety of performance metrics to be 
defined, including the vector-valued metrics required for multi-criteria analysis. 

The overall calculation is divided into three distinct phases: 

1. Based on the experiment specification, the inputs for each required run of the underlying damage 
model are generated. These inputs are stored in a multi-dimensional array. 

2. Each element of this run specification is then fed through the damage model, the results being 
accumulated into another multi-dimensional array sharing dimensions with the input array. 

3. Inputs and results are processed to generate summary measures and visualisations.  

  

(a) (b) 

Figure 3 Examples of additional outputs possible after damage model runs have completed  

8. RESULTS AND VISUALISATION 

This arrangement has a number of advantages over the naïve approach. It enables distributed computing 
facilities to be used for the execution of the damage model, which characteristically represents by far the 
largest portion of the analysis CPU time. It also means that a complete set of inputs and outputs are available 
for the analyst and other parties to explore, analyse, and visualise as they see fit.  

The example experiment was designed to estimate, given a joint probability density function over the input 
parameters, a distribution over performance for each of a number of options. This is a simple form of 
uncertainty propagation. Figure 1 shows the primary result, a probability density function over Net Present 
Value for each option.  

When conducting this kind of analysis it is not sufficient to compute and present the primary result. A variety 
of visualisations of intermediate steps in the analysis are required if the behaviour of the model is to be 
understood and trusted by its developers and by stakeholders in the decision it is to inform. These may be 
required at any time, including well after the selected option has been implemented, for example if the 
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quality of the modelling on which the decision was based is challenged in legal proceedings. In this situation 
it is likely that nothing short of access to the results of individual simulations will be acceptable. 

By way of example, two useful auxiliary visualisations are presented in figure 3. Subfigure (a) shows the 
development of EAD through time for all cases (base case and options) for a given sample of epistemic 
uncertainty. Subfigure (b) displays the variation of damage with event maximum sea level for a particular 
system state. Such views can be extremely useful in understanding features of aggregated results. 

9. CONCLUSIONS 

We have introduced the concept of quantitative decision analysis as the logical extension of the recent 
implementation of risk analysis in flood risk management. A conceptual framework is proposed which 
captures the essential structure of such analyses in a general form. The conceptual framework defines five 
layers of analysis. The first four – damage simulation, risk analysis, simulation of long term change 
including management intervention and performance assessment – together constitute a deterministic model 
of option performance. The fifth layer involves applying some form of computational experiment to this 
model.  

It is anticipated that a given performance model may be subjected to numerous such experiments, each 
providing modellers or decision makers with different information. Some possible experiments include 
uncertainty analysis, sensitivity analysis, search (for example for good options) and optimisation, and 
robustness analysis (Hall and Harvey, 2009). The value of uncertainty and sensitivity analysis are 
considerably increased when applied to a fully integrated performance analysis than to one or another 
component of that analysis. Robustness analysis generates new information of a kind previously unavailable 
to decision makers, allowing them to examine how flood risk management options will perform if future 
conditions deviate from current best estimate predictions. 

An example analysis has been implemented in terms of this framework as a first stage in proving its 
usefulness and generality. A prototype web-based user interface is being developed which will allow the user 
to specify and run experiments on this example and explore and visualise the results from these experiments.  

The framework has been designed to allow the implementation of a generic software tool: a model- and even 
domain-independent decision analysis tool which assists with the process of assembling models of physical 
processes and their social impacts, representations of interventions as modifications to such models, cost 
models for such interventions, models of long term change, and management options. This generality will be 
realised by iterative refinement from the model-specific prototype. 
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