
18th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009 
http://mssanz.org.au/modsim09 

The spread of a biological invasion in space and time: 
Modelling active and passive surveillance 

Hester, S.M. 1 and O.J. Cacho 1 

1 School of Business, Economics and Public Policy, University of New England, Armidale, New South Wales 
Email: shester@une.edu.au  

Abstract: Invasive species are an important threat to global biodiversity and cause considerable economic 
losses. Modelling the spread of invaders can assist in mitigating the impacts of biological invasions by 
allowing us to identify strategies that are most likely to be effective in slowing or reversing their spread. In 
many situations, the main constraint to controlling or eradicating invaders is finding them rather than 
eliminating them after they are located. Once an invasion is found it can be treated and killed with a high 
probability of success. Searching large areas actively is expensive and therefore enlisting the help of the 
public through ‘passive surveillance’ is increasingly being used by pest-management agencies. 

The roles of active and passive surveillance and their interaction are investigated here using a spatially-
explicit simulation model of the spread of an invasive species. The landscape is represented as a raster map 
consisting of square cells. Each cell in the landscape is characterised by various attributes, including habitat 
suitability and ownership type (private or public). The probability that a given site will be invaded depends 
on both habitat suitability and the number of propagules landing on it. Dispersal of propagules across the 
landscape is assumed to follow a Cauchy kernel. Long-distance dispersal may also occur independently, such 
as when propagules are transported by road or water. An invasion may be detected as a result of a report from 
the public or through active searching by a pest-control agency. Over time, the pest control agency uses 
passive detections, repeat searches and information about cell attributes to undertake additional searches in 
an attempt to eradicate the invader. 

The model is applied to a hypothetical invasion. Measures of success, such as cost and probability of 
eradication, are incorporated as fitness measures within an evolutionary algorithm that identifies optimal 
search and control strategies. Strategies are defined in terms of search effort applied per cell, the size of the 
neighbouring radius that is searched when an infestation is discovered, and the number of repeat visits to 
previously treated sites. Results demonstrate that increases in passive detection can reduce eradication costs 
and increased the probability of eradication.  

Although it is impossible to ensure that the global optimum is identified for a given scenario, the 
evolutionary algorithm helps identify quasi-optimal solutions that may be difficult to find through trial and 
error.  

Keywords: Passive detection, Pest eradication, Spatially-explicit simulation model, Dispersal, Evolutionary 
algorithm 

4298



Hester and Cacho, Modelling the spread of a biological invasion in space and time  

1. INTRODUCTION 

Invasive species are recognised as an important threat to global biodiversity (Vitousek et al., 1996) and are 
responsible for large economic losses (Liebman et al., 2001, Liebhold et al., 1995). Modelling the spread of 
invaders to assist in mitigating the ecological and commercial impacts of biological invasions allows us to 
make best estimates of which strategies are likely to be most effective in slowing or reversing the spread of 
invaders. In most situations, outside of agriculture, the main constraint to eliminating invaders is not killing 
them but finding them. Once an invasion is found it can be treated and killed with often high probability. 

The probability of finding an organism through active search by a pest-control agency in a target area is 
affected by the detectability of the organism and the amount of search effort applied per unit area. With a 
limited budget, application of more search effort per site results in less sites able to be searched, and hence a 
higher risk that the invasion will spread outside the containment area. There is a clear tradeoff between 
intensity of search and the extent of area searched. Understanding this tradeoff can lead to improved chances 
of controlling or eradicating invasions. 

As an option to avoid spending large amounts of money searching for invaded sites over a large area, pest 
management agencies are now using ‘passive surveillance’ - reports from members of the public of 
encounters with pests - to assist in surveillance and control. The Ministry of Agriculture and Forestry 
Biosecurity New Zealand (MAFBNZ) describes passive surveillance as ‘[s]urveillance that relies on 
members of the public, industry groups, plant or animal health professionals and/or laboratories reporting 
suspected cases of plant or animal disease or the presence of a pest at their discretion.’ (MAFBNZ 2008, p. 
29). Passive detections are often the method by which an invader is first recognised in a country or region. 
For example, the initial detection of the European wasp (Vespula germanica) in Western Australia occurred 
following a private submission of a wasp for identification (Davis and Wilson, 1991). This initial report 
subsequently led to the discovery of five nests and an eradication campaign. Another example is the initial 
discovery of the red imported fire ant (Solenopsis invicta) in Australia, following submission of two separate 
samples of the ant by members of the public. The initial reports led to the discovery of two epicentres of 
infestation and the establishment of the Red Imported Fire Ant Eradication Program (Jennings, 2004). The 
recent passive detection of Khapra beetle in Perth and mango leaf gall midge on Horn Island in Queensland 
are two more examples of the important role the community can play in the early detection of invasive 
species (Beale et al., 2008). 

In addition to its value in the initial detection of a pest, passive surveillance during eradication programs has 
also proven to be very important: records from the campaign to eradicate the European wasp from Western 
Australia show that the public are responsible for finding 90% of the infestations in new areas (Davis and 
Wilson, 1991); reports of fire ants by the public have resulted in detections of half the outlying populations of 
the ant (Jennings, 2004); and the Four Tropical Weeds Eradication Program (4TWP) in Queensland obtained 
information for more than a quarter of the locations of weeds in the program due to detection by members of 
the public (Brooks and Galway, 2008).  

Given the difficulty and expense of finding organisms through active search, and the potential importance of 
passive detections, an understanding of both types of surveillance can help develop useful decision tools. 
Cacho et al. (2006, 2007) adapted search theory (a technique used in search and rescue and military 
operations) to the control of biological invasions. Their model assumed a homogeneous search area where 
population density could increase, but did not consider spatial spread. In this paper we extend their model by 
applying the search algorithm to multiple sites within a landscape and representing spread through space as 
well as time. In addition, we incorporate passive surveillance. We apply the model to a hypothetical invasion 
and determine the probability and potential costs of eradication, for various active and passive surveillance 
strategies. A genetic algorithm (GA) is then applied to find better search strategies in terms of search effort, 
search radius and repeat visits for given rates of passive detection. Results provide useful insights into the 
design of efficient pest-control programs. 

2. THE MODEL 

The model applied in this paper is implemented in Matlab (The Mathworks, 2002). The model is described in 
detail by Cacho et al. (in review). Only a brief overview of the model is presented here. The landscape is 
represented as a matrix of dimensions nr × nc whose elements are square cells of 1 ha each. Cells have four 
attributes, each contained in a different map layer:  

• Habitat suitability (αi): the probability that a propagule landing on cell i will become established, 
taking a value of 0 (will not become established) or 1 (will become established).  
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• Detectability (λi), the effective sweep width of cell i, measured in distance (m) from the search path 
(explained below). 

• Search speed (si), the speed (m/h) at which cell i can be traversed following standard search 
procedures. 

• Ownership type (oi), a binary variable indicating whether cell i is privately owned (oi = 1) or 
publicly owned (oi = 0). 

For convenience all maps are represented as column vectors of dimension n× 1, (where n = nr × nc). This 
speeds up execution and simplifies coding of numerical operations. These vectors can be easily mapped back 
to the original matrix (their elements are arranged vertically down the rows and then across the columns of 
the matrix).  

The state of a cell i is given by its invasion status, represented by binary variable xi (1=presence, 0=absence) 
and contained in vector x (the state vector). An invaded cell produces w propagules per time period, and these 
propagules spread to neighbouring cells. The distance between cells (dij) determines the proportion of 
propagules from cell i that reach cell j according to a dispersal kernel. The dispersal kernel is used to create 
an adjacency matrix (A) of dimensions n× n, whose element Aij represents the expected proportion of 
propagules dispersing from cell i to cell j. Element Aij is calculated based on the distance between cell i and 
cell j, applying a Cauchy kernel. Long distance dispersal can occur with probability pL independently of the 
dispersal kernel, as may occur when propagules are transported by road, water, or other means.  

Stochastic simulation of dispersal through time is executed by the matrix multiplication  

( )Axy w'=  (1) 

where y represents the number of propagules landing in each cell. The habitat suitability (αi) of each cell is 
then used to determine the probability that the site will become infested and new infestations are selected 
through random sampling.  

An invaded cell can be detected through passive surveillance with probability (pp) or through active search 
with probability (pa). In passive surveillance the public detects an invader and reports it to the relevant 
agency. The probability of passive detection depends on the ownership attributes (oi) of a cell.  

The agency in charge of managing the invasion invests search effort (M) in the following order of priority: (i) 
by searching sites where treatment has occurred in the recent past (repeat search); (ii) by searching sites in 
response to reports from the public (follow-up search); and (iii) through independent searching in public land 
not previously searched during (i) or (ii) (active search). The probability that an invasion will be detected 
(pai) depends on the search effort applied: 
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The expression within the inner brackets represents coverage, defined as the ratio of the area actually 
searched over the total area of the cell; a is the cell area (10 000 m2), si and λi are the map attributes defined 
earlier, and mi is the search effort applied (hr) in cell i. The 
effective sweep (λi) is a measure of the detectability of the 
target and is affected by target characteristics, 
environmental conditions and the capability of the searcher 
(see Cacho et al., 2006; 2007 for details). Equation (2) 
represents the probability of detection if the invader is 
present, as a function of search effort (Figure 1). Any 
invasions detected, whether by active of passive 
surveillance, are treated and killed with probability pk. 

We assume that, to encourage passive detections, the public 
is offered a bounty payment (CB) for each detection 
reported to the relevant agency. The total cost of any given 
scenario therefore depends on the number of passive 
reports, the amount of search undertaken by the agency and 
the cost of treatment. Total cost (C) is calculated in terms of 
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Figure 1. Probability of detection as a 
function of coverage, given in equation (2).
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present value as:  
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where Npt is the simulated number of cells where a passive find is reported in year t, Nat is the simulated 
number of cells where search takes place, NTt is the number of cells treated as a result of the three types of 
search, and CB, Cm and CT are the bounty payment ($/report), the cost of searching ($/ha) and the cost of 
treatment ($/ha), respectively. SR is the number of years repeat searching should occur and β is the discount 
rate. The second summation term in (3) represents the cost of repeat searches to ensure that cells treated in 
previous years have not been reinvaded.  

If a passive detection occurs in a private parcel the invasion is destroyed, but not necessarily reported. If the 
passive detection occurs in a public parcel it is destroyed only when reported. This covers the situation where 
a person may eliminate a pest from their backyard but they may not inform the authorities and therefore no 
follow-up searches would occur in adjacent areas. The probability that an invasion will be reported is given 
by pB. 

We assumed that active search by the pest-control agency occurs only in public land unless a detection is 
made. In this case, an intensive search is conducted in all parcels within a specific radius (rm) of the detection 
site, regardless of ownership type. 

3. THE SIMULATION 

An arbitrary world of dimension n=16,641 (hectares) (nr=nc=129) was created using a mid-point 
displacement fractal algorithm (Saupe, 1988); in this world 0.7 of the area was under private ownership and 
the remaining 0.3 was under public ownership. A base model run (Base) using parameter values that reflect 
the spread of a hypothetical but plausible insect pest (Table 1) was compared with an optimal solution 
generated using a genetic algorithm (Base GA). In both simulations the probability of passive detection on 
private land (pp1) was set at 0.3. In a subsequent run, (Passive GA), pp1 was increased to assess the effects on 
cost and time to eradication of an increase in passive surveillance. All simulations consisted of 100 Monte 
Carlo iterations with a planning horizon (T) of 15 years.  

Eradication was defined as absence of 
invaded sites by the end of the simulation. 
Let  

=
i

itt xX  (4) 

represent the total area invaded at time t. Xt 
is used as a measure of performance and to 
calculate eradication probabilities. In the set 
of simulations reported below an initial 
invasion was generated randomly and used 
as the initial state for all simulations. In each 
simulation the total effort available for 
active search was set at 6 554 hours, enough 
to apply about 1.3 hours of search per public 
cell. This is in addition to the time required 
for repeat searching and following up on 
passive detections. Additional parameter 
values used in the simulations are presented 
in Table 1.  

3.1. The Genetic Algorithm  

A binary-string genetic algorithm was 
applied to identify optimal control strategies. 

Table 1. Parameter values used in the base case simulation 

Parameter Value Description 

w 100 Propagules produced by invaded cells (no.) 

pp1 0.3 Probability of passive detection, (private) 

pp0 0.1 Probability of passive detection, (public) 

pL 0.02 Probability of long-distance jump 

M 6554 Total effort available (hr) 

αi 0.02 Habitat suitability 

λi 5 Effective sweep width (m) 

si 1,000 Search speed (m/hr) 

mi 2 Minimum search effort per cell (hr) 

tD 5 Time period when invasion is discovered 

γ 3.95 Dispersal kernel parameter 

pk 1 Probability of killing treated invasions 

pB 1 Proportion of passive detections reported 

rm 5 Search radius for reported sites (no. cells) 

SR 3 Number of repeat searches 

CB 500 Cost of bounty ($ per find) 

Cm 30 Cost of search ($/hr) 

CT 100 Cost of treatment ($/ha) 

β 0.06 Discount rate 

a 10,000 Cell area (m2) 

T 15 Planning horizon (y) 
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This type of evolutionary algorithm has been applied to a 
wide range of problems in the area of agriculture and natural 
resource management (Mayer, 2002) including to the 
management of invasive species (Taylor and Hastings, 2004). 
The aim of our GA is to identify optimal search and control 
strategies that minimise the cost of management the pest 
while maximising the likelihood of eradication. The 
chromosomes are contained in vectors consisting of three 
parameters: search effort applied per cell (m), the size of the 
neighbouring radius that is searched when an infestation is 
discovered (rm) and the number of repeat visits to previously 
treated sites (SR). The last two variables are integers and 
therefore the binary-string GA is well suited to the problem. Each individual in the GA population has a 
measure of fitness that incorporates both the total cost (C from equation 3) of a particular strategy and the 
invasion size measured as the area invaded at the end of the time period (X15), measured in years. The fitness 
function (F) to be maximised is:  








 −=
C

XX
F 151  (5) 

Pairs of individuals were selected for reproduction using roulette-wheel sampling (Goldberg, 1989). 
Additional information about the GA is given in Table 2. The base-case values reported in Table 1 were used 
to start the optimisation run. Although it is impossible to ensure that the global optimum is identified for a 
given scenario, the evolutionary algorithm helps identify quasi-optimal solutions that may be difficult to find 
through trial and error. 

4. RESULTS AND DISCUSSION 

Comparing the cumulative distribution functions (CDF) of final area invaded for the Base and Base GA 
simulations provides useful insights for planning purposes, as well as evidence that the GA produces a 
considerable improvement over the base simulation (Figure 2A). The initial invasion size in the simulation 
was 206 ha. The base case resulted in partial control of the invasion, as the probability of final area invaded 
being less than 206 ha was virtually 1.0. However this strategy did not result in eradication, as the Base curve 
intersects the horizontal axis at a positive value (19 ha) implying that the probability that 0 ha will be invaded 
by year 15 is zero (Figure 2A). The optimal solution for Base GA resulted in much better control, and a 0.7 
probability that the invasion would be eradicated by year 15, and this was achieved at a lower cost than in the 
base case (Figure 2B). The entire CDF of cost for the GA solution is to the left of the CDF of cost for the 
base case (Figure 2B). These results indicate that the GA strategy dominates the base strategy by a 
considerable margin, in terms of both costs and probability of eradication.  
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Figure 2. Cumulative distribution functions of final area invaded (A) and Cost (B) showing the base case 
solution (Base) and the optimal solution for the base genetic algorithm (Base GA). 

Results in Table 3 indicate that the main difference between the base simulation and the GA solution is in the 
intensity of search per cell (m). In the base case m is 2 hours per cell, whereas in the base GA, m is 8.06 hours 

Table 2. Values of GA parameters 

Description Value 

Population size 20 
Number of generations 50 

Lower, upper bound of m 0, 10 

Lower, upper bound of rm 0, 7 

Lower, upper bound of SR 0, 3 

Mutation 0.6 

Crossover 0.6 

Number of new individuals 20 
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per cell. Given the size of the public area to be searched and the total amount of active search effort available 
(M), the base strategy would allow about 66% of public land to be searched, whereas the GA strategy would 
allow only 16% of public land to be searched. 
Applying the parameter values from Table 1 
to equation (2) we find that the base strategy 
results in only 0.63 probability of detection, 
whereas the GA strategy results in a 0.98 
probability of detection. Active search occurs 
in public lands, where the probability of 
passive detection is low (0.1) and the results 
indicate that, if a site is to be searched, it is 
important to ensure a high probability of 
detection. 

Other results in Table 3 indicate that the 
increased search effort per cell should be 
accompanied by a reduction in the search 
radius around detections (rm) from 5 to 4 cells, 
and repeat visits to previously treated cells 
(SR) should occur for only one year rather than 
three. Using the GA Base strategy the cost of 
eradication is $3.19 million, compared to 
$3.95 million, nearly a 20% reduction. In both 
cases most of the cost is attributed to 
searching for the pest. The median time to 
eradication is 13 years under Base GA while it 
never occurs within the 15-year time frame 
under Base.  

When pp1 is increased to 0.8 (GA Passive) 
optimal values of m, rm and SR fall compared to those under Base GA. The optimal amount of time spent 
searching (5.48 hr/cell) is still higher than under the base case, and would allow 24% of public land to be 
searched with a probability of detection of 0.94. An interesting effect of increasing the probability of passive 
detection in private land to 0.8 in GA Passive, is that the search radius decreases to 2 cells and repeat 
searches are eliminated. The total cost decreases substantially, to $1.90 million, and the median time to 
eradication is 8 years.  

Our results suggest that increased use of public surveillance makes the invasion easier and cheaper to 
eradicate. The cost of bounties paid to the public are small compared to search costs, ranging between 
$80,000 and $210,000 in our example, and representing less than 10% of total costs.  

In summary it appears that it is cost effective to engage the public in the search for pests, even if monetary 
rewards are involved. However, we increased passive detection probability exogenously (from 0.3 to 0.8) and 
did not capture all the costs of this shift. We included bounty costs, but not other costs, such as investment in 
public awareness campaigns as well as the time required to respond to false-positive reports. These costs are 
unknown and their estimation may require a behavioural model, involving the response of the public to 
information campaigns and monetary incentives. This is an interesting topic for future research. In the 
meantime, we can calculate the maximum amount we should be willing to pay for these information 
campaigns. By comparing Base GA and GA Passive in Table 3, we see that increasing the passive detection 
probability in private land from 0.3 to 0.8 results in $1.29 million savings. This is the minimum amount we 
should pay to achieve such an increase in passive detection. The actual amount may be higher than this if the 
value of earlier eradication is factored in (e.g. as a reduction in the risk that the invasion will escape out of 
the surveillance area). 

5. CONCLUSION 

We developed a spatially-explicit model that represents the spread of a biological invasion and the process of 
detection by pest-control agencies and the public. The model was used to simulate the spread of a pest 
through a landscape. A GA was used to identify quasi-optimal strategies for controlling the invasion. The 
optimal parameter values for search effort, search radius and repeat visits selected by the GA algorithm led to 
improvements in the feasibility of eradication and the total cost of the control program.  

Table 3. Results of base case and the two GA 
strategies. 

Scenario: Base 
Base 
GA 

GA 
Passive 

Assumptions:    

Passive detection probability    
   private land, pp1 0.3 0.3 0.8 

Results from GA: (a indicates base values). 

m 2.00a 8.06 5.48 
rm 5 a 4 2 

SR 3 a 1 0 

Results from all simulations (means of 100 iterations): 

Total cost ($M) 3.95 3.19 1.90 
Bounty cost ($M) 0.21 0.08 0.18 

Search cost ($M) 3.73 3.10 1.70 

Treatment cost ($M) 0.01 0.01 0.01 

Final area invaded, E(Xt) 74 1 5 

Median year eradicated -- 13 8 

Probability of eradication 0.00 0.61 0.62 

Mean passive detections (no.) 608 1889 405 

Mean passive effort per year (h) 3,293 3,464 1,574 

Mean active effort per year (h) 6,427 6,552 6,535 

Mean repeat effort per year (h) 3,381 1,492 0 
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It was shown that passive surveillance may be a critically important source of information for public pest 
management agencies. Increased probability of passive detection resulted in considerable cost savings and 
higher probability of eradication. Active surveillance was also shown to be important, particularly when the 
probability of passive detection in public lands is low. The GA results indicated that, under the assumptions 
of our model, it is important to apply relatively high search effort per unit area, to achieve probabilities of 
detection > 0.9, even at the expense of a smaller total area being searched.  

This study was based on a number of arbitrary (although plausible) assumptions regarding the characteristics 
of the landscape and the invasive organism. The next step is to apply this model to a real pest/landscape 
scenario. Future research on whether changes in pest characteristics and landscape features may affect 
optimal strategies will be useful and contribute further to designing more efficient eradication programs.   
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