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Abstract: In minerals supply chains, medium term plans over time horizons from two weeks
to two years are used not only to maximise throughput and identify bottlenecks, but also for
scheduling crews, production and maintenance. These plans need to observe constraints like
maintenance and production requirements, fleet capacities, and dumping, loading and stockyard
management at every site. Additionally, the iron ore supply chains considered in this paper
also needs to deal with grade quality constraints. This introduces extra complexities in terms of
non-linear constraints as the quality depends on the mixing ratio of ore from different sources.
We present an optimisation tool that was developed for Rio Tinto Iron Ore for such planning.
The tool provides optimal number of trains while taking into account all the system constraints
and has already reduced total planning time significantly.
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1. INTRODUCTION

Australia is the largest iron ore exporter in the world. In 2009 it produced 394 million tonnes
of iron ore, of which 362 million tonnes were exported, generating $30 billion in value. Of this
material, 97% came from the Pilbara region of Western Australia (WA). Rio Tinto Iron Ore
(RTIO) is one of the major producers, with an operating capacity of around 240 million tonnes
per annum. Its freight rail network, the largest privately-owned in Australia, currently consists
of twelve mines and three shipping terminals, with plans to further expand. Planning operations
for such an extensive network has proved to be a cumbersome and lengthy process that needs
manual estimations of weekly trains, and where preservation of iron ore grade quality is a non-
trivial requirement. An additional disadvantage of the manual approach is the rigidity of the
results, which make it very difficult to undertake a “what-if” analysis. CSIRO developed a model
that finds the optimal production schedule, assists in medium-term planning of operations, and
enables the assessment of alternative scenarios. It was implemented in C++ with the capability
of interfacing to Gurobi or CPLEX with a Visual Basic-supported user interface in Excel.

Several medium-term planning projects have been reported in the literature. Li and Tayur
[2005] present a rail scheduling problem that incorporates pricing into a medium-term planning
of intermodal transportation. Their focus is on pricing, in contrast with our emphasis on grade
compliance. Bilgen and Ozkarahan [2007] adopt a very similar modelling approach for deter-
mining the amount of blended grain shipped between ports, as well as inventory bookkeeping.
Data sparsity (coming for example from unconnected ports) is exploited by compacting data sets
and querying SQL selectively. For our project, non-relevant combinations of set elements, as for
example car dumpers working at one but not other ports, are filtered as part of the design of
the C++ program. A crucial difference is that all mixtures in Bilgen and Ozkarahan [2007] are
binary, whereas in our case product blends involve ten components.

Projects involving blending and planning usually deal with these problems separately. For ex-
ample, Sandeman and Stanford [2010] discuss a mineral export optimisation model coupled to
a discrete-event simulation module used to fine-tune the grades of the mineral. Rehman and
Asad [2010] discuss an optimal quarry production scheduling problem. Quarry block extraction
requirements are modelled as precedence constraints and savings are compared to an empirical
approach. Ulstein et al. [2007] formulate a model for the Norwegian oil industry where the mole
fraction of different hydrocarbons is considered while optimising the oil and gas distribution
plans. Their model improves the way flow from the wells is processed and distributed. The
study of Fishman and McInnes [2005] describes a coal supply chain analysis tool that emphasises
sampling and quality control for coal operations.

Our medium-term rail planning model is introduced formally in Section 2, emphasising the
calculations needed to preserve grade quality. Section 3 describes the optimal and “roll-over”
heuristic approaches to the solution and their relative performance. Section 4 presents the results
and Section 5 rounds the discussion with conclusions and future work.

2. PLANNING MODEL

In many mining export problems, buffers (stockpiles) serve to manage variabilities in product
quality and in the amount of transported materials. Stockpiles in mines and ports are used for
blending the ore into products that meet the quality specifications, as well as to control the flow
of material through the system. Products mined at various sites can be roughly classified as lump
and fines, each with its own particular composition. Subsection 2.3 will present a more detailed
description of how blending is handled as part of the planning process.

2.1. Objective Function

The objective is to maximise revenue while minimising the deviation from the product quality
specification,

312
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Revenue = Total profit− Cost of live stockpile violations− Cost of bulk stockpile violations

− Cost of grade non-compliance− Cost of bulk handling

− Cost of extra-trains− Cost of violating preference requirements

− Cost of violating return fines requirements. (1)

The total profit for shipping product is
∑

s∈S SPs

∑
t∈T

∑
r∈R zr,s,t, where SPs is the profit per

shipped tonne of product s and zr,s,t is the amount of product s shipped from port r in period
t. The cost of live stockpile limit violations is∑

m∈M

∑
p∈Pm

MSV Lm,p

∑
t∈T

(
α↑m,p,t + α↓m,p,t

)
+
∑
r∈R

∑
s∈Sr

PSV Lr,s

∑
t∈T

(
β↑r,s,t + β↓r,s,t

)
,

where MSV Lm,p represents the limit violation penalty for live stockpiles of mined product p in

mine m, PSV Lr,s is the limit violation penalty for live stockpiles in the ports, and α↑m,p,t and

α↓m,p,t are the amounts by which the maximum and minimum live stockpile limits were violated,
respectively. An analogous term is needed for the cost of bulk stockpile limit violations.

The cost of deviating from the target compositions of the shipped products is∑
c∈C

∑
r∈R

∑
s∈Sr

[
GPIr,s,c

∑
t∈T

(sir,s,c,t + eir,s,c,t) +GPOr,s,c

∑
t∈T

(sor,s,c,t + eor,s,c,t)

]
,

where GPIr,s,c is the penalty for violating the target grade of component c and GPOr,s,c is the
penalty for violating the composition control limit, sir,s,c,t and eir,s,c,t are the slack and excess
variables to penalise when c is off target, respectively, and sir,s,c,t and eir,s,c,t are the slack and
excess variables to penalise when c is outside the control limit, respectively. The cost associated
to moving material from/to bulk stockpiles is∑

m∈M

∑
p∈Pm

BPMm,p

∑
t∈T

(
y+m,p,t + y−m,p,t

)
+
∑
r∈R

∑
s∈Sr

BPRs,r

∑
t∈T

(
u+r,s,t + u−r,s,t

)
,

where BPMm,p and BPRr,s are the handling costs of products at mines and ports respectively,
y+m,p,t and y−m,p,t are the transfers to and from bulk stockpiles at mines, and u+r,s,t and u−r,s,t are
the transfers to and from bulk stockpiles at ports.

The cost of exceeding train trips is
∑

f∈F TPf

∑
t∈T γf,t, where γf,t is the amount by which the

number of allowed trains of fleet f was exceeded, and TPf is the corresponding penalty.

The cost of not respecting a preference like dumping a product in a specific car dumper is ex-
pressed as

∑
m∈M

∑
d∈Dm

PPm,d

∑
t∈T κm,d,t , where PPm,d denotes the penalty for not fulfilling

the preference and κm,d,t is the amount by which a selected car dumper d in port r could not
comply with dumping all product p.

Finally, the penalties for violating the preferred ratio of shipped lump to fines (see subsection 2.3)
are

∑
r∈R PRSPr

∑
t∈T δr,t, where PRSPr,t is the penalty for violating the specified ratio, and

δr,t is the penalty variable for deviations in the ratio.

2.2. Operational constraints

The main constraints that must be followed so that the schedule is operationally feasible are:

1. The total amount of live product stacked, both at the mines and the terminal, should not
exceed the allocated product capacities and the live stockpile capacity. Live stockpiles are
part of the main production line and bulk stockpiles act as buffers.

Smin
m,p,t − α

↓
m,p,t ≤ sm,p,t ≤ Smax

m,p,t + α↑m,p,t ∀m ∈M, p ∈ Pm, t ∈ T

W min
r,s,t − β

↓
r,s,t ≤ wr,s,t ≤W max

r,s,t + β↑r,s,t ∀r ∈ R, s ∈ Sr, t ∈ T ,
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where sm,p,t and wr,s,t are the live stockpile levels at mines and ports respectively, Smin
m,p

and Smax
m,p are the minimum and maximum live stockpile levels at mine m, and W min

r,s and
W max

r,s are the minimum and maximum live stockpile levels at port r. Similar constraints
apply to bulk product.

2. Inloaders and outloaders cannot service more than a specified maximum capacity in tonnes
per period.

0 ≤
∑

s∈S zr,s,t ≤ Zmax
r,t ∀r ∈ R, s ∈ Sr, t ∈ T

0 ≤ sm,p,t ≤ Y max
m,p ∀m ∈M, p ∈ Pm, t ∈ T

0 ≤ wr,s,t ≤ Umax
r,s ∀r ∈ R, s ∈ Sr, t ∈ T ,

where Zmax
r,t , Umax

r,s and Y max
m,p are the maximum tonnes of product that can be shipped,

stockpiled in ports and stockpiled in mines, respectively.

3. The live stockpiles must not exceed the site’s yard limit. For mines and ports that have
a bulk stockpile, material accumulates in the live stockpile until reaching its maximum
control limit, then it is placed into the bulk stockpile until this reaches its capacity, and
then it is put again in the live stockpile until this reaches the stockyard limit. For mines,

Smax
m,p,t + α↑m,p,t ≤ Y LMm,p,t ∀m ∈M, p ∈ Pm, t ∈ T

y+m,p,t ≥ α↑m,p,t ∀m ∈M, p ∈ Pm, t ∈ T ,

where Y LMm,p,t is the yard limit. Similar constraints apply to ports.

4. The number of trains that service a region cannot exceed the total allowed number of trains
in that region.∑

m∈g

∑
p∈Pm

∑
d∈Dm,r,p

∑
s∈S

xm,p,d,s,t ≤MTg,t ∀g ∈ G, t ∈ T ,

where xm,p,d,s,t is the number of trains and MTg,t is the maximum number of allowed
trains in region g. Similar capacity constraints apply to train fleets, car dumpers, inloaders
at the mines and the ports and outloaders at the mines and at the ports.

5. The total number of consists and consist hours for each fleet should not exceed the available
pooled fleets and hours of a fleet in a given period,∑

m∈Mf

∑
p∈Pm

∑
d∈Dm,r,p

∑
s∈S

xm,p,d,s,t ≤ MFTf,t + γf,t ∀f ∈ F, t ∈ T

∑
m∈Mf

∑
p∈Pm

CTm,p,t

∑
d∈Dm,r,p

∑
s∈S

xm,p,d,s,t ≤ PFTf,t + µf,t ∀f ∈ F, t ∈ T ,

where CTg,p,t is the cycle time of a train carrying mined product p from region g at period
t, MFTf,t are the available consist numbers and PFTf,t is the available pooled hours of
fleet f at period t. The γf,t are the additional consists required and µf,t is the additional
cycle time needed for fleet f at period t.

6. In the mines, the live stockpiles of product at the beginning of a period equal the existing
material in the stockpile plus the produced material plus the material transferred from
the corresponding bulk stockpile minus the material transferred to the corresponding bulk
stockpile minus the material railed to the ports.

sm,p,t+1 = sm,p,t + IOPp,m,t + y−m,p,t − y+m,p,t

− TSm,p

∑
d∈Dm,r,p

∑
s∈Sm,p

xm,p,d,s,t ∀m ∈M, p ∈ Pm, t ∈ T ,

where TSm,p is the capacity of a train in tonnes transporting product p from mine m, and
IOPp,m,t is the amount of product p produced at mine m in period t. Similar bookkeeping
constraints apply to bulk at the mines and bulk and live material at the ports.
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Other constraints are concerned with special requirements, for example penalties for not deliver-
ing a specific product to a particular car dumper. These are not shown due to space limitations.

2.3. Planning and blending

Blending poses a special challenge. The model must comply not only with iron ore composition,
but also with other requirements, like mixing a fraction of the fines with lump to enhance its
quality. To illustrate only one of the non-linearities introduced by grades, we discuss railed
material composition. Analogous expressions are needed for stockpiles at mines and ports.

Railed grade calculations. The model considers material handling regimes in the mines as
one of first-in-last-out (FILO) and first-in-first-out (FIFO). If the mine is FILO then

RGm,p,c,t =

∑
d∈Dm,r,p

∑
s∈Sm,p

(IOP tnsm,p,c,t + L tnsm,p,c,t +B tnsm,p,c,t)∑
d∈Dm,r,p

∑
s∈Sm,p

TSm,pxm,p,d,s,t−1
(2)

where

IOP tnsm,p,c,t = min{TSm,pxm,p,d,s,t−1, IOPm,p,t−1} IOP gradem,p,c,t−1 (3)

L tnsm,p,c,t = min{sm,p,t−1, max{0.0, TSm,pxm,p,d,s,t−1}} LMm,p,c,t−1

B tnsm,p,c,t = max{0.0, TSm,pxm,p,d,s,t−1 − IOPm,p,t−1 − sm,p,t−1} BMm,p,c,t−1 .

The terms IOP gradem,p,c,t−1, LMm,p,c,t−1 and BMm,p,c,t−1 represent the mined grade, live
material grade, and bulk grade respectively. Equation (2) implies that, if the mine’s regime
is FILO, the produced quantity will first be loaded into the trains leaving the mine, and the
remaining from the live stockpiles. If this amount is not sufficient, the remaining amount will
come from the bulk stockpile. Accordingly, the respective grades are multiplied to accurately
calculate the grade railed from the mine. An analogous expression is needed for mines whose
regime is FIFO.

To obtain an approximate solution, an iterative method was used. In the first step, the problem
was solved without grade constraints. In the following steps, the solution value for stockpile
levels and number of trains of the previous iteration was fed back into the problem as estimates
for the denominators for the calculation of the grades. This procedure was repeated for a fixed
number of iterations.

3. SOLUTION APPROACHES

The model was implemented in C++ with the capability of interfacing to Gurobi1 or CPLEX2

solvers with a Visual Basic-supported user interface in Excel. Two heuristic methods were also
implemented to provide RTIO with good quality solutions in a shorter time. The rationale behind
these heuristics is that the farther back in time a schedule was realised, the less effect it should
have in present plans.

1. The optimal method finds the number of trains that maximises profit over the full time
horizon, and evidently produces the best solution possible considering all parameters. The
optimal problem formulation is made up of around seventy thousand variables and sixty
five thousand constraints.

2. Heuristic 1 (H1) solves the problem using a sequence of iterations where train numbers are
taken as integers only for the first D periods, and as real numbers for the rest of the time
horizon. The solutions from previous iterations are fixed and taken as a starting solution
for the next iteration, but the problem is solved for the complete horizon in every iteration.
The procedure is repeated until the end of the planning horizon is reached.

1http://www.gurobi.com/
2http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
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3. Heuristic 2 (H2) uses a sequence of iterations on smaller intervals of D′ periods. In the
first iteration the model is solved for a limited time horizon [0, D′]. In the second iteration
the model is solved over the horizon [0, 2D′ − d′] with the solution from the first iteration
used to fix the values of xm,p,d,s,t for t ∈ [0, D′−d′]. In general, in the (i+1)th iteration the
model is solved over the horizon [0, D′+ i(D′−d′)] with the solution from the ith iteration
used to fix the values of xm,p,d,s,t for t ∈ [0, i(D′ − d′)]. The process continues until the
complete planning horizon is covered.

4. RESULTS AND DISCUSSION

The results presented here were obtained using CPLEX 12.1.1 in a 64-bit Intel Xeon CPU with 2
processors of eight cores (2.27 GHz) each and 48 GB of RAM. The results of the grade preservation
algorithm outlined at the end of subsection 2.3 (Figure 1) for 20 iterations show that the grades
do converge after seven iterations. The total grade deviation costs are a very small fraction of
the total costs (of the order of 10−7) while most of the grade deviation penalties are of around
AUD 12.5M per kilotonne. These high penalties and low costs indicate that the deviations from
desired grades are very small. Deviation (in %) from the optimal values is shown in Figure 2(a).
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Figure 1: Iron ore grade deviation costs.

H1’s quality is worse than H2 in general. As the optimal method was terminated with a gap of
2%, in some cases, the percentage deviation is a small negative number which implies that the
heuristics can find better solutions than the optimal method. We find it interesting that even
though the heuristics are myopic and do not consider, in the case of H1, that train numbers are
always integer, or in the case of H2, that the full time horizon parameters are disregarded, they
manage to find near optimal solutions. Mostly it was H2 that found better solutions than other
methods. A comparison of computation times is shown for varying numbers of grade iterations
in Figure 2(b). Apart from the obvious increase in time with number of iterations, these results
show that H1 with a high D (25 or 30) and H2 run faster than the optimal method on the same
data set. The speed of H2 does not vary much as a function of its parameter values, which is to
be expected since H2’s intervals are smaller and therefore has less variables and constraints. This
fact combined with H2’s deviation from the optimal value make this heuristic more practical and
robust. H1 turns out to be not so reliable.

5. CONCLUDING REMARKS

The medium-term rail planning tool presented enables the translation of tactical plans at RTIO
into shorter-term, strategic plans by optimising use of various resources like trains, rail tracks
and mines. The tool has proved useful in shaping operations, identifying bottlenecks and helping
managers understand uncertainties. Grade preservation is an interesting requirement of the
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Figure 2: Comparison of the three implemented solution approaches.

model, and an algorithm to comply with it was introduced. Results of the optimal implementation
and two heuristics were presented, of which H2 turned out to be more robust and reliable.

Planning time has been cut from five hours to less than one (and sometimes even under 15
minutes) and some enhancements remain in the pipeline. The main of these include shortening
the planning horizon to make the tool relevant to day-to-day operations, expressing joint ventures
as commitments to commercial partners, and incorporating costing and profit information.
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