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Abstract: Ernest FilipOskar Lundberg (1876-1965) is regarded as the founder of mathematical ruin
theory (Cramer (1969)). In his 1903 thesis, and subsequently, Lundberg formulated and analysed proba-
bilistic models for the dynamics of insurance practice and applied his ideas to the activities of insurance
companies with which he was directly involved. As Cramer (1969) comments“his [Lundberg’s] ideas
were far ahead of his time, and his works deserve to be generally recognized as pioneering works of fun-
damental importance”. His models represent early examples of stochastic processes with independent
increments, before the development in the 1930’s of a rigorous and general theory of stochastic processes
by Kolmogorov, Khinchine, Levy and Feller. For example, the Poisson process, unknown as an explicit
entity until its formal 1909 introduction by Erlang in the study of telephone traffic, comes out as a quite
special case of the general probabilistic process formulated in the 1903 thesis (Cramer (1969)).

In insurance modelling, the goal is the prediction of the probability of various outcomes related to the
dynamics and viability of a proposed operational scenario. An example of such an outcome is the prob-
ability of ultimate ruin. Mathematically, the underlying equations which must be solved take the form of
renewal and defect renewal equations which form special subsets of linear convolution Volterra integral
equations. The analysis of such equations has established that the required probability is often the tail of
a related compound distribution. For the estimation of the probability of ultimate ruin, it is the tail of a
compound geometric distribution which must be determined (e.g. section 7.3 in Willmot and Lin (2001)).

As discussed in considerable detail in Willmot and Lin (2001) and Psarrakos (2009, 2010), the renewal
process that models the probability of ultimate ruin takes the form of a defect renewal equation. The
defect parameterφ, 0 < φ < 1, characterizes the robustness of the insurance portfolio withφ ∼ 1
corresponding to a highly risky strategy.

Feller (1941) proposed and gave the first rigorous treatment of the renewal equation from a linear second
kind convolution Volterra integral equation perspective, assuming the non-negativity of the kernel, forcing
term and solution. His motivation was the 1939 papers of Lotka, which comprehensively summarized the
early history of the renewal equation and motivated, via a number of different applications, the importance
of the Volterra structure of such equations. For the types of stochastic processes examined by Feller,
the defect renewal structure is pathological as it corresponds to some of the components having a zero
probability of failure.

In insurance as well as other stochastic process applications, it is often the case that only an estimate of
the kernel of the (defect) renewal equation will be available from experimental data. This leads naturally
to the need to examine the stability of the solution of the corresponding defect equations with respect
to perturbations in their kernels, which is the focus of this paper. The goal is to show how the earlier
analyis of Feller (1941) of the Volterra structure of the renewal equations extends naturally to the analysis
of the defect renewal equation. This is achieved using the resolvent kernel relationship for linear second
kind convolution Volterra integral equations, specialized to the situation where the kernel, forcing term
and solution are non-negative. It builds on and complements the stability analysis of the interconversion
equation of rheology and of its extension to linear first and second kind convolution Volterra integral
equations (Anderssen et al. (2008a,b)). It illustrates the strong overlap between the theories of stochastic
processes and Volterra integral equations.
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1 THE DEFECT RENEWAL EQUATION

Since the 1903 thesis of Lundberg, the dynamics of an insurance portfolio has been modelled in terms of
the stochastic dynamics of the progressive sum

SNt
= X1 +X2 +X3 + · · · XNt

, Nt = 1, 2, · · · ,

of a sequenceXi, i = 1, 2, · · · of independent and identically distributed (i.i.d.) random variables
supported on[0,∞) which model the stochasticity of the incoming claims. The claims are assumed to
arrive at random times{ti}, i = 1, 2, · · ·, with inter-arrival timesτi = ti − ti−1 with t0 = 0. If the{τi}
are assumed to be i.i.d, then the arrivals of claims, by definition, form a renewal process. Usually, this
process is assumed to be Poisson. The integer-valued random variableNt is the number of claims made
in the time interval(0, t]. The viability of an insurance portfolio depends on whether or not the insurer’s
surplus

U(t) = S∗ + ct− SNt
> 0, t > 0,

whereS∗ ≥ 0 is the initial surplus andc the premium rate per unit time. Ruin occurs ifU(t) ever becomes
negative. Formally, for the random event

M = min
t≥0

U(t),

the eventRuin occurs if
Ruin ≡ {M ≤ 0} .

Intuitively, Ruin is certain if, on average, the payoutsSNt
exceed income; namely, if (E[X] > cE[τ ]).

If, however, (E[X] < cE[τ ]), there is a positive probability thatRuin will not occur. The mean“drift” of
the processU(t) is defined by (cE[τ ]−E[X]), so negative drift corresponds to certainRuin and positive
drift to a positive probability of survival.

Under these assumptions, the successive steps in the values of the surplus (U(ti+1) − U(ti)) are clearly
i.i.d. random variables, so theU(ti), i = 1, 2, . . . correspond to a one-dimensional random walk starting
from S∗. Embedded within this random walk is the random walkZ#

i
of the successively decreasing

minima of the processU(t), defined byZ#
0 = S∗ and, fork = 1, 2, · · ·,

Z#

k
= {first value of surplus for which U(ti) < Z#

k−1}. (1)

If UNt
has a positive drift, there will be a last minimum with probability1. Indeed, the process might

never drop below the initial value.

The succession of decreasing ladder steps (record increments) represent the losses defined between the
minima. Define∆#

k
= Z#

k−1 −Z#

k
, k = 1, 2, · · ·. They are non-negative and represent the magnitudes

of the losses. As shown in Feller (cf. Feller (1971), Section 12.1), the∆#

k
form a sequence of non-

negative i.i.d. random variables, so the process

Y #
n

=

n
∑

k=1

∆#

k
, n = 1, 2, · · · ,

is by definition a renewal process. If there is a positive drift, the process isterminating(or transient); i.e.
there is a positive probability1−φ that any ladder step is the final one and the renewal process has a finite
lifetimeL. In this case, the common distribution of the∆#

k
is defective; i.e. it has an atom of probability

1−φ at+∞. Further, the distribution ofL is compound geometric(Feller (1971), Section 11.6); i.e. it is
the sum of a geometrically distributed number of i.i.d. random variables where the geometric distribution
has parameterφ. The common distribution of the summands,F (x) say, forx > 0, is the distribution of
the non-defective part of the∆#

k
; i.e.

φF (x) = Pr(∆#

k
≤ x), for x > 0.
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Thenthe distribution ofL,G(x) say, is

G(x) = Pr(L ≤ x) = (1 − φ)
∞
∑

n=0

φnFn∗(x), x < 0,

whereFn∗ = Pr(Y #
n

≤ x) denotes then-fold convolution ofF with itself.

To calculate the probability of ruin for an initial capitalx > 0 which isψ(x) = Pr(L > x), it is the tail
distributon

G(x) = 1 −G(x) = (1 − φ)

∞
∑

n=0

φnFn∗(x), Fn∗(x) = 1 − Fn∗(x)

that is required. It satisfies the defect renewal equation

G(x) = φ

∫

x

0

G(x− τ)dF (τ) + φF (x), F (x) = 1 − F (x). (2)

AssumingthatF ∈ C1[0,∞) with F ′(x) = dF/dx, this equation can be rewritten as

G(x) =

∫

x

0

k(x− s)G(s)ds+ φF (x), k(x) = φF ′(x).

It represents a specific realization of the second kind convolution Volterra integral equation

y = k ∗ y + f, k ∗ y = (k ∗ y)(x) =

∫

x

0

k(x− s)y(s)ds =

∫

x

0

y(x− s)k(s)ds, (3)

with the kernelk, the solutiony and the forcing termf non-negative functions, and‖k‖1 = φ < 1.

In addition to ruin analysis, the above defect renewal equation arises independently in a number of prac-
tical stochastic modelling situations including in reliability, branching and queuing. In an equilibrium
queue, the compound geometric distribution models the distribution of the waiting times of arrivals. The
essential stochastic dynamics is the same as that outlined above for an insurance portfolio.

The sequel has been organized in the following manner. The effect on the solution of equation (3) of
perturbations in the kernelk is examined in section 2. An interpretation of the resulting stability results,
as they relate to the defect renewal equation (2), is given in section 3.

2 SOLUTION STABILITY WITH RESPECT TO KERNEL PERTURBATIONS

Differentiation with respect to the independent variablex will be denoted byk′ = dk(x)/dx, k′′ =
d2k(x)/dx2, etc. It will be assumed that the relevant functions have the required smoothness.

In his analysis of the renewal equation, Feller (1941) exploited the properties of second kind convolu-
tion Volterra integral equations with kernel, solution and forcing terms being non-negative, and, thereby,
established the existence and uniqueness of and various asymptotic properties for the solution for such
equations. However, Feller did not explicitly examine the defect form of the renewal equation or consider
the effect of perturbations in the kernelk on the solutiony. From a practical perspective, Feller’s focus
was Lotka’s method for solving renewal equations.

There are various ways in which the effect of kernel perturbation can be estimated. In de Hoog and An-
derssen (2011), bounds have been derived directly for the second kind equation (3), under the assumption
that the kernelk and the forcing termf satisfyk ≥ 0 andf ≥ 0, and‖k‖1 = φ. Here, it is shown how
bounds can be derived using the first kind convolution Volterra integral equation

K ∗ y = F, F (0) = 0, K = K(x), K(0) = 1, y = y(t). (4)

Differentiation of this last equation yields

y +K ′ ∗ y = F ′,
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which,with

K(x) = 1 −

∫

t

0

k(x̄)dx̄, F (t) =

∫

t

0

f(x̄)dx̄, (5)

yields equation (3). Since it has been assumed above thatk ≥ 0 andf ≥ 0, it follows that

K(x) ≥ 0 if

(

1 −

∫

x

0

k(x̄)dx̄

)

≥ 0; F ≥ 0; F ′ ≥ 0.

With ‖k‖1 = φ, the conditions

K(t) ≥ 0, K ′(t) ≤ 0, K ∈ C1[0,∞) and K(∞) = 1 − φ (6)

are automatically satisfied when the kernelk is a defect density function.

The framework developed by de Hoog and Anderssen (2010) and Anderssen et al. (2011) for the analysis
of kernel perturbations for first kind Volterra convolution integral equations can now be utilized. The key
step is the assumption that, for the given kernelK, there exists a functionH with respect to which the
following interconversion relationship holds

H ∗K = K ∗H = t.

As an immediate consequence, sinceH ∗K ∗ y = t ∗ y = H ∗F , it follows that de Hoog and Anderssen
(2010)

y =
d2

dt2
(H ∗ F ).

Corresponding tothe first kind equation (4), the effect of kernel perturbations on its solution is assumed
to take the form

(K + γ) ∗ (y + ǫ) = F, γ(x) = −

∫

x

0

δk(x̄)dx̄, γ(0) = 0, (7)

from which it follows, again usingH ∗K = t, that

K ∗ ǫ = −y ∗ γ − ǫ ∗ γ, (8)

and, hence,

ǫ = −
d2

dt2
(H ∗ y ∗ γ +H ∗ ǫ ∗ γ) . (9)

On thebasis of the analysis found in de Hoog and Anderssen (2010), it follows, forζ < 1, that, because
of the validity of the conditions (6),

‖ǫ‖∞ ≤
β

1 − ζ
‖γ‖∞, ‖γ‖∞ = max

0≤x≤∞
|

∫

x

0

δk(x̄)dx̄|, ‖γ‖1 =

∫ ∞

0

|

∫

x

0

δk(x̄)dx̄|dx, (10)

and

‖ǫ‖∞ ≤
ζ

1 − ζ
‖y‖∞, (11)

with, usingthe above properties ofγ,

β =
|y(0)| + ‖y′‖1

1 − φ
, ζ =

‖δk‖1

1 − φ
,

ζ

1 − ζ
=

‖δk‖1

1 − φ− ‖δk‖1

.

Fromthe first result (10), it is clear that, whenδk is oscillatory with changing sign, the size of‖γ‖∞, and
hence,‖ǫ‖∞ (especially whenφ << 1), can be quite small. The second result (11) has a similar form to
the corresponding result in de Hoog and Anderssen (2011), which was derived using the basic properties
of second kind convolution Volterra integral equations (3) for which the kernelk, the solutiony and the
forcing termf are non-negative functions, and‖k‖1 = φ < 1.
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3 CONCLUSIONS

The clear advantage of the bounds (10) and (11) is that they highlight, respectively, the dependence of
‖ǫ‖∞ on ‖γ‖∞ and on‖y‖∞. In addition, they show that the dependence of‖ǫ‖∞ on the form of the
kernelk is through the value ofφ.

Because of the explicit dependence of‖ǫ‖∞ on the reciprocal of(1 − φ), it follows that as an insurance
protfolio becomes more problematic asφ → 1, the use of approximations fork = φF ′, even with very
small errors, will, in general, yield unrelaible estimates for the probability of total ruin. This is a direct
reflection of the volatility of situations whereφ ∼ 1.

Here, the above analysis is based on the assumption thatφ is fixed. In a more general treatment, the effect
of how perturbations in the assumed claim size distributions affect the possible values ofφ would have to
be taken into account.
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