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Abstract: Mesoscopic, coarse grained models of phase transitions are of interest for their potential to
simulate the transient fine scale structure associated with rapid phase transitions and the equilibrium prop-
erties of multi-phase systems. The van der Waals square gradient model provides a convenient equation
of state for a fluid with a liquid and vapour phase. A three dimensional smooth particle hydrodynamics
code was developed in order to investigate the fidelity with which this numerical technique captures the
behaviour of the van der Waals model, parameterised for water in conditions of liquid-vapour coexis-
tence. Our code is capable of modelling small to medium sized systems of the order of several thousands
of particles in three dimensions, at scales of 10-100 nanometres.

Lagrangian methods such as smooth particle hydrodynamics (SPH) are capable of simulating flows with
complex structure naturally. Smooth particle methods represent the fluid as a collection of ’particles’ rep-
resenting macroscopic fluid elements and carrying mass, momentum and thermal energy. The equations
of motion governing the smooth particles are derived from the continuum (Navier-Stokes) equations. The
pressure and heat flux tensors are determined using linear constitutive relations and an equilibrium equa-
tion of state. Specific substances are modelled by the selection of this equation of state and of parameters
for the constitutive relations. Lagrangian particle methods bring their own set of numerical challenges for
which algorithmic solutions are implemented, including artificial viscosity, anti-clumping measures and
the use of different length scales for different components of the equation of state.

The smooth particle equations of motion for a phase separating fluid are solved using parameters derived
for water. The condensation of a liquid phase from the water vapour naturally from the solution of the
model, with no explicit tracking of the vapour-liquid interface required. Using the smooth particle code
to solve the continuum equations of motion for this model of water, we are able to produce droplets and
planar gas-liquid interfaces under a variety of boundary conditions. By controlling the mean temperature
of the fluid and the volume of the periodic box, the fluid can be taken to arbitrary points on the phase
diagram. Expansion may be used to induce boiling, while temperature quenches can be used to produce
an instability driven decomposition into coexisting liquid and vapour.
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1 INTRODUCTION

1.1 The van der Waals square gradient model

The van der Waals equation of state is based on the assumption of a long range mean field attraction
between molecules and a hard core repulsion [van der Waals, 1979] [van Kampen, 1964]. It relates
equilibrium pressure p with temperature T and has attractive and repulsive parameters ā and b̄. The van
der Waals square gradient model describes the inhomogeneous interfacial region as smoothly varying in
density. Combining the two we obtain the following for the pressure at a point in a fluid in terms of mass
density ρ:

p (ρ, T) =
ρk̄bT

1− ρb̄
− ρ2ā− M̄

(
ρ∇2ρ+

1

2
|∇ρ|2

)
1 + M̄∇ρ∇ρ (1)

For water, ā = 1.045x103 Jm
3

kg2 , b̄ = 1.038x10−03m3

kg , k̄b = 4.615x102 m
2

s2K
and M̄ = 9.244x10−17 Jm5

kg2

[Kjelstrup, 2008].

Convenient scaling values are chosen so that numerical solutions are not complicated by extremely large
or small numbers, and the equation rewritten in terms of scaled variables. We choose a scaling length
of 2.81 nm, a scaling mass of 1.247 x 10-23 kg, a scaling temperature of 562K and a scaling time of
one nanosecond. The scaled van der Waals parameters are attraction ã = 7.446x104, repulsion b̃ =
5.842x101 and gradient coefficient M̃ = 8.345x102 , while the scaled value of Boltzmann’s constant is
3.285x104.

In the PV plane below the critical temperature the isotherms of the equation of state have two stationary
points known as spinodal points and a kink known as a van der Waals loop in which a homogeneous fluid
is negatively compressible. The free energy in this region has a double well form which is minimised by
an inhomogeneous combination of vapour and liquid states on a constant pressure tangent (the ’Maxwell
construction’). The critical temperature is the temperature above which vapour and liquid have the same
density. The equilibrium state is the state of minimum free energy A. The combination of the constant
pressure constraint and common tangent in the PA plane requires the pressure to be minimised subject to∫Vl

Vg
PdV = PV (Vg − Vl). The binodal curve gives the volumes of coexisting liquid and vapour and is

formed by the locus of points minimising A subject to these constraints for isotherms over the range of
coexistence temperatures.

Figure 1: The van der Waals equation of state, with
the Maxwell construction tie line, parameterised for
water. Green: binodal line, Red: vapour, homoge-
neous and liquid densities at 562K, Black: spinodal
points at 562K. Blue line: pressure-volume cureve
for T=562K. Blue shading: areas equalised by the
Maxwell construction.

A numerical solution for the binodal line was ob-
tained using Brentq optimisation [Brent, 1973], a
fast robust root finding method implemented in the
scipy package [Scipy]. The pressure satisfying the
equal area constraint is found by optimisation of
the area function above between the two spinodal
pressures. The solution for water is shown in fig-
ure 1.

1.2 A continuum model for condensation

The continuum equations of motion in the La-
grangian frame are

dρ

dt
= −ρ∇ · v, (2)

dv
dt

= −
1

ρ
∇ · P, (3)

du

dt
=
1

ρ

(
−∇ · Jq − PT : ∇v

)
, (4)
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with velocity v. The substance specific physics is contained in the pressure tensor P and the heat flux Jq.
We have included contributions from the equilibrium isotropic pressure, Newtonian viscosity with shear
and bulk coefficients η and ηv and the the density gradient coefficient M̄, where (∇v)os is the symmetric
traceless velocity gradient. The full pressure tensor is given by

P =

(
ρk̄bT

1− ρb̄
− āρ2

)
1 − 2η (∇v)os − (ηv∇ · v) 1 − M̄

(
ρ∇2ρ+

1

2
|∇ρ|2

)
1 + M̄∇ρ∇ρ. (5)

The heat flux is given by Fourier’s law Jq = −λ∇T . Temperature is related to internal energy u by the
equilibrium equation of state T = u+āρ

k̄b
where λ is the coefficient of thermal conductivity.

In the solution of this model the vapour-liquid interface is a diffuse region where the density varies
smoothly between the bulk liquid and vapour densities.

1.3 The smooth particle equations

Mesoscopic, coarse grained models of phase transitions are of interest for their potential to simulate the
transient fine scale structure associated with rapid phase transitions and the equilibrium properties of
multi-phase systems. Lagrangian methods such as smooth particle hydrodynamics are capable of simu-
lating flows with complex structure naturally. Smooth particle methods represent the fluid as a collection
of ’particles’ representing macroscopic fluid elements and carrying mass, momentum and thermal energy.
Particle arrangements track inhomogeneities in the simulated material for example in the impact frature
of a solid [Hoover, 2006] or turbulent magnetohydrodynamics [Price and Federrath, 2010].

A three dimensional smooth particle hydrodynamics code was developed in order to investigate the be-
haviour of a simple model, parameterised for water, when subjected to temperature and volume quenches
into the unstable region of the phase diagram.

The density of each particle is computed as

ρ(ri) =

N∑
j=1

mjW (|ri − rj| , h) , (6)

where Wij is a normalised smoothing kernel. We use Lucy’s quartic spline which is computationally
cheap and finite in extent. It is given in two dimensions by

Wlucy =
5

Πh2

(
1+ 3

r

h

)(
1− 3

r

h

)3
(7)

where h is a smoothing length associated with the range of the kernel and r is the distance from the center
of the kernel.

The equations of motion governing the smooth particles are derived from the continuum (Navier-Stokes)
equations and symmetrised to ensure pair interactions are symmetric. The momentum and energy equa-
tions for smooth particles are

dvi

dt
= −

N∑
j=1

mj

(
Psi

ρ2i
+

Pj

ρ2j

)
· ∇iWij −

N∑
j=1

mj

(
PLi

ρ2Li
+

PLj

ρ2Lj

)
· ∇iWLij (8)

and

dui

dt
= −

1

2

N∑
j=1

mj

(
Pi

ρ2i
+

Pj

ρ2j

)
: vij∇iWij −

N∑
j=1

mj

(
Jqi

ρ2i
+

Jqj

ρ2j

)
· ∇iWij, (9)

where the summation is over j neighbouring particles, with particle velocity vi and particle internal
energy ui. Isotropic pressure is given by the van der Waals equation of state using the particle density
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and is separated into short range repulsive and long range attractive components. Ps represents the short
range and PL the long range pressure. A long range density is also computed for use in expressions
involving the long range force using a longer smoothing length H. To avoid unstable attractive forces
we treat the cohesive and repulsive components of the pressure separately, using a longer range for the
attractive forces. This is required to obtain well behaved liquid vapour coexistence with SPH. Figure
2 shows interparticle forces at various temperatures and background densities. The left panel shows
the interparticle force with h = 2.0 and H = 4.0. The right panel shows the interparticle force with
h = H = 2.0. Negative forces are attractive. It is clear from this plot that the h = H case results
in uniformly attractive and thus unstable forces between particles for some temperatures and densities.
Stability of the simulation requires that interparticle forces become repulsive at a sufficiently high density,
close distance. Where a longer ranged kernel is used for part of the force it is used to compute all
smoothed properties that go into computing that force. The short range pressure is computed as

Psi =

(
ρsik̄bt

1− ρsib̄

)
1 + −2η∇vosi + −(ηv∇ · vi) 1 (10)

where vosi = 1
2

(
∇vi + (∇vi)

T
)

− 1
d

(∇ · vi) 1

with velocity gradient

∇vi =
1

ρi

∑
j=1

mj(vj − vi)∇iWij, (11)

kernel gradient

∇iWij =
ri − rj
|rj − ri|

∂Wij

∂rij
(12)

and velocity divergence

∇ · vi =
1

ρi

∑
j=1

mj (vj − vi) · ∇iWij. (13)

The long range pressure is computed as

PLi =
(
−āρ2Li

)
+ M̄

(
ρLi∇2iρLi +

1

2
|∇ρLi|2

)
1 +M∇ρLi∇ρLi, (14)

where the density gradient is computed using the long range smoothing length as

∇ρi =

N∑
j=1

mj∇iWij. (15)

The heat flux Jq in the energy equation is

Jqi = −λ

∑
j

mij

ρij
(Tj − Ti)∇iWij

 (16)

.

519



A. Charles and P. Daivis, Three dimensional smooth particle modelling of the condensation of water.

Figure 2: Interparticle force as a function of separation. Left: with long range attraction and short range
repulsion. Right: Attractive and repulsive components with the same smoothing length.

1.4 Liquid Vapour coexistence from 2D volume quenches

Previously we introduced a 2D implementation of SPH for solving the van der Waals equation of state
with the square gradient density approximation. A limitation of this work was that the van der Waals
parameters were chosen purely out of convenience, limiting the use of experimental data to validate the
theoretical predictions and the simulated results. In this paper we have extended this implementation to
solve the equations of motion in three dimensions using a set of parameters derived for water.

Figure 3: Coexisting densities produced by volume quenches in two dimensions at a range of tempera-
tures. Right: Coexisting densities produced by volume quench in two dimensions at a scaled temperature
of 1.05. The blue line is the mean profile density.

In figure 3 we show the results of previous work with a two dimensional smooth particle model initialised
in an unstable configuration and allowed to separate into liquid and vapour phases. Following Nugent
and Posch [2000], this work showed that the coexisting densities are correctly related to the system
temperature. Similar experiments using temperature quenches instead of volume quenches to induce
spinodal decomposition in the model system were reported in Charles and Daivis [2009].

2 COMPUTATIONAL ISSUES

Particle based methods can be much more computationally intensive than grid based methods. Our model
uses a standard Verlet list which is an order n2 neighbour list construction method. Construction of
the list is a minor cost, the major cost is the computation of interparticle distances. The next largest
computational cost is the string of calculations that must be carried out for each pair. Control code is
implemented in python to take advantage of flexibility, while all neighbour list loops and most all particle
loops are implemented in Fortran or Cython. Because so much of the computational cost is concentrated
in the inner loops over pairs this strategy is possible with little sacrifice of speed.
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To achieve stable simulations of quenches we used a step size of 0.0001 scaling times, achieving simulated
times of 0.4 nanoseconds with 4000 timesteps.

The numerical method imposes some stability constraints: certain particle mass settings will disallow
the system from reaching certain densities even though these densities are the optimal equilibrium state,
while others will allow particles to reach the density threshold (ρb = 1) beyond which interparticle forces
are unstable and simulations diverge.

To prevent particles attaining these densities which are not plausible physically and not practical to sim-
ulate numerically we impose a hard collision at a distance of 0.6 scaling lengths. It is also necessary to
create particles with sufficient mass that the densities desired to be resolved can be attained by particles
further apart than this minimum separation. Other means to prevent numerically based degeneration of
the simulation include artificial viscosity and artificial repulsive forces.

3 COMPUTATIONAL EXPERIMENTS

We first equilibrated a 1000 particle system in a cubic box of a side 10 scaling lengths long where each
particle has a mass of 0.4 at a scaled temperature of 1.5. This produced a system with a small range of
particle densities given by equation 6 shown in figure 4.

This is a very small system, of the order of the size of a virus, and smaller by an order of magnitude than
engineered nanoparticles ( 200-500nm). Simulation of larger systems could be accomplished by using a
larger number of particles, or assigning a larger mass to each particle.

We quenched the vapour to a scaled temperature of 0.5 with parameters described in section 1 for 3000
timesteps with a timestep size of 0.0001 from an initial temperature of 1.5. The simulated quench time is
3.0x10−10 seconds with the film configuration attained at roughly 5x10−11 seconds.

Figure 4: Particle position plot of the quench of a gas to a cylindrical film at 0, 1500, 2500 timesteps,
with normalised particle density distribution histogram (top left of each frame). Frames show particle
positions as seen from the xy,xz and yz planes.

The phase separation of the water develops naturally from the solution of the model, with no explicit
tracking of the vapour-liquid interface required. We observe the formation of two distinct phases, al-
though the vapour phase is barely resolved due to the large density difference between vapour and liquid.
The liquid phase adopts a curious cylindrical configuration. No particular significance should be attached
to this shape other than the observation that it is a minima of the surface area. The periodic bound-
ary conditions used in the simulation stabilise configurations that would not minimise the free energy in
unbounded space.

The theoretically predicted liquid density is 1.45. The maximum particle density is 1.53. The peak
of the density distribution of the final state is between 1.3 and 1.35. This agreement is close enough
to be encouraging, although the attained densities are not as a good a fit of expectations as for the two
dimensional systems previously studied. Larger simulations are required in order to ensure that a true bulk
state has been attained because in these simulations the size of the liquid film is less than the smoothing
length.
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Figure 5: Left: Initial and (middle) final particle density distribution of the quenched formation of a
cylindrical film. Right: 3D render with density plane slice and density isosurfaces of final state.

3.1 Conclusions and Recommendations

Using the smooth particle code to solve the continuum equations of motion for this model of water we
have used a temperature quench to produce an instability driven decomposition into coexisting liquid and
vapour with a cylindrical-planar interface.

We have extended our previous modelling of liquid-vapour phase transitions using the simple van der
Waals model from two dimensions to three dimensions. We have shown that we can model coexisting
phases with densities close to theoretical values for a smooth particle model parameterised for water.
Further work using molecular dynamics and experimental studies is needed to determine if the dynamics
of phase transitions are captured correctly.
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