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Abstract: The objective of this paper is to assess the suitability of a new, open-source, Finite Element
Modelling (FEM) program called Object-Oriented Multi-Physics Finite-Element Library (oomph-lib)
to study the Fluid-Structure Interaction (FSI) mechanics of a fluid-conveying two-dimensional channel
that has a flexible section. Previous studies have shown that this system contains rich dynamics that can
include unstable oscillations of the flexible-wall section due to the fluid loading that itself is determined
by the wall motion. The fundamental system is relevant to a host of applications in both engineered (e.g.
flexible-pipes, membrane filters, and general aero-/hydro-elasticity) and biomechanical (e.g. blood flow,
airway flow) systems.

The computational model developed using oomph-lib accounts for unsteady laminar flow interacting
with large-amplitude (nonlinear) deformations of a thin flexible wall. The fluid loading on the wall
comprises both pressure and viscous stresses while the wall mechanics includes inertial, flexural and
tension forces. Nonlinear effects in the wall mechanics principally arises through the tension induced
by its deformation and the correct modelling of its geometry throughout its motion. The discretised
equations for the coupled fluid and structural dynamics are combined to yield a single (monolithic) matrix
differential equation for all of the fluid and wall variables that is solved through a time-stepping algorithm
so as to generate numerical simulations of the system behaviour.

In this paper we present results of a systematic validation of the computational model developed. Mean-
flow mechanics are validated by comparison against theory for Poiseuille flow through the channel with
the flexible-wall held in its undisplaced position. Appropriate comparisons of statically-loaded deforma-
tions and in-vacuo vibrations of the flexible wall are made against linear theory and the limits of linear
behaviour identified. The steady-state FSI is validated by comparing large-amplitude wall deformations,
pressure and skin-friction loadings with published computational results that were obtained using a dif-
ferent computational scheme that is not in the public domain. Finally, some preliminary results of large
amplitude dynamic FSI for the system are presented and discussed. Taken together, these results demon-
strate the suitability of oomph-lib as a modelling and predictive tool for the study of fluid-conveying
flexible pipes.
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1 INTRODUCTION

The investigation regarding possible occurrence of flutter for a fluid-conveying flexible pipe with fixed
ends is significant in understanding a fundamental phenomenon of Nature. It has many biomechanical
applications as flexible conduits are universal in the human body. Examples of these are the arterial,
venous, lymphatic, pulmonary airway and urinary systems (Bertram, 2009).

The characteristic phenomena can be reproduced in laboratory experiments using the Starling Resistor
(Dodds and Runyan, 1965). A closely related model was introduced by Pedley (1992), shown in Figure 1.
It consists of a 2-dimensional (2-d) channel with one segment of the wall replaced by a membrane under
longitudinal tension. There are practical difficulties in producing the 2-d flow experimentally. However it
has still considerable theoretical advantages as it avoids the complications of fully 3-d flows found in the
Starling Resistor while exhibiting flow limitation and self-excited oscillations (Heil and Jensen, 2003).

The study of fluid-structure interaction (FSI) problems using numerical methods has become increasingly
popular due to advances in computational power. The Object-Oriented Multi-Physics Finite-Element
Library (oomph-lib), an open-source project, suits the objectives of this study (Heil and Hazel, 2006).

The purpose of this paper is to evaluate the suitability of oomph-lib for 2-d flexible channel stability
investigations. The scope of the present paper includes validation of the individual components and
steady-state FSI of the system. Section 2 outlines the theoretical and computational modelling method
used and Section 3 discusses model validation results.

2 THEORETICAL AND COMPUTATIONAL MODELLING

The model created is based on that by Pedley (1992). Figure 1 shows the major geometrical parameters
of the model. Variables identified with asterisks are dimensional and those without asterisks are non-
dimensional. Fluid flow is driven by a prescribed Poiseuille velocity profile at the inlet of the 2-d channel
of width H∗ and total length L∗

total. The total length is the summation of the upstream length L∗
up,

collapsible section length L∗
collapsible, and downstream length L∗

down. The upstream and downstream
sections are rigid, and the central section is an elastic plate. The wall is loaded by an external pressure
p∗ext and the traction that the fluid exerts on it.

Section 2 describes the formulation of the governing equations for the viscous fluid and flexible wall
components of the oomph-lib model. Some manipulation of these equations is performed to normalise
the numerical problem so it is numerically better-conditioned. Table 1 lists the quantities used for non-
dimensionalisation. Quantities used here include the undeformed channel inlet pressure p∗in, the dynamic
viscosity µ∗, Young’s modulus E∗ and Poisson’s ratio ν.

Table 2 lists the four non-dimensional quantities that govern the solution space: Reynolds Number Re,
Strouhal Number St, fluid pressure scale ratioQ and the solid-to-fluid density ratio. NoteQ is the ratio of
the fluid pressure scale µ∗U∗/H∗, used to non-dimensionalise the Navier-Stokes equations (Elliott et al.,
2010).

2.1 FLUID FLOW

The Newtonian fluid is governed by the incompressible Navier-Stokes equations. Non-dimensionalisation
using the entries of Table 1 gives the Navier-Stokes equation and continuity equation in the following form

Re

(
St
∂ ui

∂t
+ µj

∂ui

∂xj

)
=

∂p

∂xi
+
∂ui

∂xj

(
∂ui

∂xj
+
∂uj

∂xi

)
and

∂ui

∂xi
= 0, (1)

with velocity component u, spatial coordinate x and time t. Subscripts i, j = 1, 2 respectively denote the
horizontal and vertical position and direction.

The velocity vector is

V = u1e1 + u2e2 (2)

where ui is the velocity component and ei the unit vector; subscripts 1 and 2 respectively again denote
the horizontal and vertical directions.
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Figure 1. 2-d model of a flexible channel fixed at both ends

Table 1. Scaling quantities for non-dimensionalisation

Variable Scaling Quantity Mathematical Representation
Length Channel Width H∗

Velocity Undeformed channel mean velocity V ∗
mean = p∗inH

∗2/ (12µ∗L∗
total)

Time Channel width / Mean velocity T ∗ = H∗/V ∗
mean

Pressure Viscous scale µ∗V ∗
mean/H

∗

Stresses and Traction Effective Young’s modulus E∗
eff = E∗/

(
1− ν2

)
Table 2. Solution space non-dimensional quantities

Variable Mathematical Representation
Reynolds Number Re = ρ∗V ∗

meanH
∗/µ∗

Strouhal Number St = (H∗/V ∗
mean)/T ∗ = 1

Fluid pressure scale ratio Q = µ∗U∗/E∗
effH

∗

Solid-to-fluid density ratio ρ∗s/ρ
∗
f

The fluid flow is subject to the following boundary conditions:

• Inflow is prescribed to be a plane Poiseuille velocity profile

V (x1 = 0, x2, t = 0) = 6x2 (1− x1) e1 + 0 e2; (3)

• No slip on rigid walls; and flexible walls.

V = 0; V = St
∂Rw

∂t
(4)

where Rw is the flexible wall displaced position.

The finite-element model used to solve the Navier-Stoke equations discretises the fluid domain with 2-
d Taylor-Hood elements. Nodal positions are updated in response to the changes in the flexible-wall
position when it deforms.

2.2 FLEXIBLE WALL

The beam elements in oomph-lib are based on geometrically nonlinear Kirchoff-Love beam theory
with incrementally linear constitutive equations.

The beam’s undeformed shape is parametrised by a non-dimensional Lagrangian coordinate ξ and the
non-dimensional position vector to a material particle on the beam’s centerline in the undeformed con-
figuration is given by rw (ξ). The unit normal to the beam’s undeformed centerline is denoted by n. The
applied traction f = f∗/Eeff (a force per unit deformed length of the beam) which deforms the beam
causes its material particle to be displaced to the new position Rw (ξ), and the unit normal to the beam’s
centerline is N (Elliott et al., 2010).

The non-dimensional form of the principle of virtual displacements that governs the beam deformation is
then given by∫ L

0

[
(γ) δγ +

1

12
h2κδκ−

(
1

h

√
A

a
f + Λ2 ∂

2Rw

∂t2

)
· δRw

]
√
adξ = 0 (5)

567



L. Lai et al., Computational Modelling of a Fluid-Conveying Flexible Channel

where

a =
∂rw

∂ξ
· ∂rw

∂ξ
and A =

∂Rw

∂ξ
· ∂Rw

∂ξ
(6)

represent the squares of the lengths of infinitesimal material line elements in the undeformed and de-
formed configurations respectively.

We represent the curvature or the beam’s centerline before and after deformation by

b = n · ∂
2rw

∂ξ2
and B = N · ∂

2Rw

∂ξ2
(7)

The strain and bending ’tensors’ γ and κ are then given by

γ =
1

2
(A− a) and κ = − (B − b) (8)

Next, the ratio of the natural timescale of the beam’s in-plane extensional oscillations is

Λ2 =
H∗

T ∗
natural

√
ρ∗

E∗
eff

where T ∗
natural =

H∗

U∗ (9)

Λ2 may be interpreted as the non-dimensional wall density, thus setting it as equal to zero corresponds to
the case of zero wall inertia.

The flexible wall is discretised with one-dimensional, isoparametric, two-node Hermite beam elements.

2.3 COUPLING AND EXTERNAL PRESSURE

The interaction between the fluid and flexible wall is modeled using traction elements. It is assumed there
is no slip for the fluid directly adjacent to the flexible wall. Thus the nodal positions of the fluid in contact
with the flexible wall move in unison.

The wall is loaded by an external pressure pext and the traction that the fluid exerts on it. The components
of load vector f+ that acts on the wall are given by

fi = −pextNi +Q

(
pNi −

(
∂ui

∂xj
+
∂uj

∂xi

)
Nj

)
for i, j = 1, 2, (10)

where Ni are the Eulerian components of the outer unit normal on the boundary of the fluid domain.

3 RESULTS OF MODEL VALIDATION

The fluid flow component is validated in Section 3.1 and flexible wall component in Section 3.2. These
components are validated separately with FSI turned off (Q = 0) and based on Case u3 by Luo et al.
(2008) with parameters listed in Table 3. The steady-state FSI is then validated by comparing with
several other cases as listed in Luo et al. (2008) with Case u3 being one of these. 1

3.1 FLUID FLOW

The steady fluid component validation has been previously reported in Lai et al. (2010). A rigid channel
was modelled and the pressure drop was linearly decreasing, and zero at the outlet as specified in the
boundary condition. The magnitude was consistent with analytical results for a rigid channel with viscous
flow. Also, the Pouseuille velocity profile specified as the inlet condition was maintained throughout the
channel. A second validation was performed by applying an external pressure on the flexible wall, pushing
the wall inwards. The pressure and velocity behaviour was consistent with theory again; see Lai et al.
(2010) for further details.
1These parameters match that of Davies and Carpenter (1997)
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Table 3. Dimensional and Non-Dimensional Parameters

Parameter Value Description
L∗

up 5× 10−2 m Upstream length of channel
L∗

collapsible 5× 10−2 m Collapsible length of channel
L∗

down 30× 10−2 m Downstream length of channel
H∗ 1× 10−2 m Height of channel
h∗ 1.095× 10−4 m Thickness of flexible wall
ρ∗f 1× 103 kg.m−3 Density of fluid
µ∗ 1× 10−3 Pa.s Dynamic viscosity of fluid
ν∗ 0.5 Poisson’s ratio of solid
ρ∗sh

∗ 0 Mass per unit area of solid
B∗ 7.2× 103−9 N.m Flexural rigidity of flexible wall
U∗

mean 0.02 m/s Inlet mean velocity
Re 200 Reynolds Number
St 1 Strouhal Number
Q 3.0429× 10−8 FSI parameter
ρ∗s/ρ

∗
f 0 Solid-to-fluid density ratio

3.2 FLEXIBLE WALL

The displacement of the flexible wall under applied traction is validated as follows. A uniform pressure
is applied on the flexible wall and FSI turned off to determine the displacement of the flexible wall under
external pressure effects only. This result is validated against linear Euler beam theory. The flexible wall
mid point displacement from oomph-lib is divided by the theoretical value as shown in Figure 2(a).
This is plotted against the external pressure applied. A 1.0 value means the theoretical and numerical
results are the same. The results begin to deviate approaching an external pressure value of 1 × 104 Pa.
This deviation is due to the displacement of the flexible wall now varying from linear theory, not due to
numerical inaccuracy. This is as expected as oomph-lib is a non-linear solver and has the capability to
model the non-linear range.

The dynamic behaviour is validated by applying an external pressure on the flexible section that creates
its Mode-1 and Mode-2 shapes. This external pressure is released and the flexible wall allowed to move
freely. With FSI off, the beam is effectively in vacuo. This process is repeated with application of different
external pressure values while maintaining the Mode-1 and Mode-2 shapes. Figure 2(b) shows the flexible
wall oscillation frequency compared to theoretical values for a uniform Euler beam. The graph shows the
ratio of numerical f and theoretical natural frequency fn against the flexible wall midpoint displacement.
Like the static displacement results, there is good agreement with linear theory up to a certain point, then
deviation occurs due to non-linearity.

(a) (b)

Figure 2. Flexible wall validation of the beam – convergence to linear theory. (a) Numerical-to-
analytical static displacement ratio of flexible wall midpoint vs. uniform external pressure applied, and
(b) Numerical-to-analytical frequency ratio vs. flexible wall midpoint displacement amplitude
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3.3 FLUID-STRUCTURE INTERACTION

FSI modelling is validated by comparing against Luo et al. (2008) which uses eigenvalue analysis and
a different modelling scheme from oomph-lib. Figure 3(b) is the comparison of the flexible wall
for different parameter values, the previously used Case u3 was one of these cases. Figure 4 is the
comparison of the fluid pressure change adjacent to the flexible wall. Both these comparisons show there
is good agreement for stable FSI modelling.

In the dynamic run of these cases, an initial impulse is applied to the flexible wall external pressure.
Therefore these cases are categorised based on the outcome of their dynamic runs; s means the oscillation
due to the impulse damps out, n means the system oscillated to a steady state and continues oscillating
indefinitely, and u denotes a system that will oscillate with a growing displacement. Table 4 below shows
the parameters scheme. The only changes to the Case u3 parameters is in the wall stiffness value cλ.

Table 4. Parameter Scheme for Luo et al. (2008)

Case n10 s7 s9 s10 u1 u2 u3

Wall stiffness cλ 1668.75 2400 1800 380 310.94 500 1000

The wall stiffness is defined in Luo et al. (2008) as

cλ =
E∗A∗

ρ∗f V
∗2
meanH

∗ (11)

where A∗ = h∗ × 1; the flexible wall cross sectional area multiplied by the unit length.

(a) (b)

Figure 3. Displacement of flexible wall under different case parameters. (a) oomph-lib and (b) Luo
et al. (2008)

(a) (b)

Figure 4. Flexible wall transmural pressure distribution. (a) oomph-lib and (b) Luo et al. (2008)
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(a) (b)

Figure 5. Fluid flow comparison. (a) oomph-lib streamlines and pressure contours (red-high, blue-
low) and (b) Luo et al. (2008) streamline (thin lines) and vorticity contours (thick lines)

The fluid flow behaviour is compared for case u3 in Figure 5. It can be seen that the fluid has oscillations
occuring in the downstream section in Figure 5(b) whereas this is almost imperceptible in Figure 5(a).
This is consistent with the analysis in Luo et al. (2008) which had predicted the oscillation frequency of
the oomph-lib model to be significantly lower. However it is seen the behaviour of both models are
consistent as there is recirculation occuring just after the flexible wall section in both models. Thus the
models generate results similar except for the difference in frequency response.

4 CONCLUSION

This paper utilizes a new numerical scheme to study a flexible channel fixed at both ends. Study of
this phenomenon has academic, industrial and biomechanical significance. The oomph-lib model is
suitable for FSI study given the ease of coupling different types of physical elements. For this specific
study, it enables the investigation of large displacement FSI, beyond geometrically linear limitations.
The results of this paper show the fluid, flexible wall and steady-state FSI coupling validated through a
comparison with the results of Luo et al. (2008).
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