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Abstract: This paper presents a heterogeneous computing algorithm for 3D Richardson-Lucy image de-
convolution applicable for use on single heterogeneous workstations, all the way up to large distributed
memory clusters consisting of many heterogeneous nodes. We demonstrate our solution on a cluster of
nodes containing multiple CPU cores and GPUs. The algorithm uses a combination of message passing
and massively-multicore programming technologies to achieve nested levels of parallelism, ranging from
course grained domain decomposition across worker processes to more fine grain parallelism within
worker processes utilising GPUs. The work distribution and worker framework is abstracted from the
type of processor architecture used for core algorithm calculation by different worker processes. Alloca-
tion of computational resources (different processors or cores) to workers is handled collaboratively by
the worker processes on each cluster node using efficient Operating System level counting semaphores,
avoiding the need to manage computational resources centrally on the cluster.

The tested implementation utilises MPI (Message Passing Interface) for parallelisation across the clus-
ter, CUFFT and custom written kernels for parallelisation of algorithm components on the GPU, and the
highly tuned MKL math library for computations on the CPU. Result show that utilising a collection of
different processor types on available nodes can provided performance benefits over the use of a single
type alone. It is common to find heterogeneous workstations with a smaller number of high performance
accelerator processors than general purpose processor cores. In these cases, when considering the number
of cluster nodes utilised versus performance, using all available processors on a node generally provides
a performance gain whilst using the same number of nodes, or allows us to achieve similar performance
using fewer nodes. We discuss situations where using multiple processor types at once can inhibit perfor-
mance, and make recommendations on when such an approach would or would not be advantageous.
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1 INTRODUCTION

Deconvolution is an important operation in many areas of
science, includingastronomy (Hanisch and White, 1993),
microscopy (McNally et al., 1999; Wallace et al., 2001),
and medical imaging. It reduces the effects of blurring
introduced during image capture, revealing objects and
details that may not have been visible in the raw image.
The blurring is characterised by the image of a point light
or impulse source in an imaging device (the point spread
function, PSF). Each point of an observed object produces
one of these point spread functions (Fig. 1), hence, the ob-
served imageg can be modeled as a convolution of the
true objectf with the PSFp plus a noise valuen at each
point, taken from a random distribution characterizing the
devices counting statistics:

g(x) =

∫
f(ξ)p(x, ξ)dξ + n(x) (1)

When the PSF is assumed to be identical at every location in the sample, a spatially invariant (SI) PSF
p(x, ξ) = psi(x − ξ) can be used. In some systems the PSF changes based on location in the sample
space, and a spatially variant (SV) functionp(x, ξ) = psv(ξ, x − ξ) provides a more accurate imaging
model,giving the intensity of light produced at image pointx by a point light source at pointξ in object
space (Preza and Conchello, 2003). Given these imaging models, the process of deconvolution seeks the
unknown true objectf by inverting Equation 1.

The Convolution Theorem for Fourier Transforms leads to a direct inversion of a noise free Equation 1
through an element-wise division in the Fourier domain, of the observed image by the PSF

F (ω) = G(ω)/P (ω) (2)

where capital letters denote the Fourier transform of the associated lower case functions. Direct meth-
ods such as these do not account well for the random noise componentn in Equation 1 and can amplify
the noise (Lucy, 1994), rendering the output “deprived of any physical meaning” (Bertero and Boccacci,
2002). Iterative methods that try to account for the statistical noise, or regularise its effects, while converg-
ing towards an appropriate “solution” are, therefore, often favored despite their increased computational
load (see Bertero and Boccacci, 2002, for an overview).

Figure 1. Image formation.

A popular iterative algorithm for achieving this is
the Richardson-Lucy (RL) algorithm (Richardson, 1972;
Lucy, 1974) which provides the Maximum Likelihood Es-
timator for f in the presence of Poisson noise, by itera-
tively re-applying a noiseless imaging model (Eq. 1) to an
improving estimate off . The algorithm is defined in the
discrete case (replacing integrals with summation opera-
tors) by

fr+1(ξ) = fr(ξ)
∑
x

g(x)

gr(x)
p(x, ξ), where (3)

gr(x) =
∑
ξ

fr(ξ)p(x, ξ) (4)

Given an initial estimatefr = f0 the algorithm iteratively:
a) applies the noise free imaging model tofr producing a blurred estimategr, b) creates a correction
vector by convolving the ratio of the observed imageg to blurred estimategr by the transpose of the PSF
(note domains of summation in Eq. 3 and 4), c) multiplies the current estimatefr by the correction to
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get a new estimate. Computation stops after a defined number of iterations or some stopping criteria is
reached. The discrete Convolution Theorem can be applied here to perform convolutions “efficiently”
by multiplication in the Fourier domain, through the use of Fast Fourier Transforms (FFTs); a class of
algorithms for performing Discrete Fourier Transforms efficiently.

The RL algorithm can become computationally intensive when a large number of iterations are required
or in the case of large images. In this paper we describe a heterogeneous computing algorithm that ac-
celerates the Richardson-Lucy algorithm on a distributed memory cluster of heterogeneous workstations
containing multiple GPUs and CPUs. As in the work of Domanski et al., (2009a) the implementation is
capable of taking advantage of all compute resources on a node. We discuss the pros and cons of using
a heterogeneous algorithm, and when utilising only GPUs and not CPUs is appropriate. Many of our
discussions and findings are generally applicable to heterogeneous parallel computing, and we generalise
discussions where appropriate.

2 BACKGROUND

A common approach to implementing the Richardson-Lucy algorithm in parallel on a cluster of PCs
(Boden et al., 1996; Shearer et al., 2001; Pawliczek et al., 2010) is based on the sectioned method of
Trussell and Hunt (1978b). In such an approach the image can be segmented into a number of abutting
sub-tiles and the RL algorithm is performed on each tile individually. A guard-band of at least half the PSF
diameter is included around each tile to allow for the additional information required during convolution
at tile boundaries. Contents of the guard-bands can be exchanged between neighbouring tiles at each RL
iteration to increase accuracy, however, this increases algorithm complexity and synchronisation barriers
in a parallel setting. We find that a course grained approach with no guard-band exchange provides
sufficient quality for our use in 3D microscopy. On completion the guard-bands are discarded and the
tiles are recombined to form the final deconvolved image. Since the processing of each tile is performed
in isolation, the tiles can easily be distributed to multiple PCs or processors and processed in parallel.
The sectioned method also provides a convenient way of incorporating a SV model (Trussell and Hunt,
1978a). By processing each tile using a SI model, but using a different PSF for each tile based on its
location, spatially variability is achieved at the tile level. Tile size can be adjusted to accommodate
greater or less extents of variability, thus minimising deconvolution artifacts between adjacent tiles.

One can also parallelise the FFT algorithm used to facilitate frequency domain convolutions. Recent stud-
ies (Govindaraju et al., 2008; Nukada et al., 2008; Volkov and Kazian, 2008) describe implementations
utilising modern massively multithreaded programming languages, and have provided significant perfor-
mance improvements over popular optimised CPU libraries (Frigo and Johnson, 2005; Intel Corporation,
2011). This type of acceleration can be used for both sectioned methods (FFT on individual tiles) and
non-sectioned methods (FFT on whole image).

Fung and Mann (2008) provide brief results for a non-sectioned GPU accelerated RL algorithm using
CUFFT (NVIDIA Corporation, 2011) and custom kernels. They show speedups over the RL implemen-
tation in Matlab (MathWorks, 2011), but do not provide discussions of the algorithm. More compre-
hensive studies (Domanski et al., 2009b; Quammen et al., 2009) have explored the use of GPU FFT
libraries combined with custom written GPU kernels for the acceleration of the non-sectioned RL algo-
rithm. Domanski et al., (2009a) describe a heterogeneous implementation of the sectioned RL algorithm
that utilises all CPUs and GPUs on a single workstation to perform RL processing, achieving speedups of
up to 10x over a serial CPU algorithm based on MKL (Intel Corporation, 2011) and up to 5x over a multi-
core MKL version. While a non-sectioned approach using a single GPU out performs a sectioned method
executed across all workstation processors, utilising a sectioned methods supports spatially variant decon-
volution as mentioned above. We extend this previous work to distributed memory cluster environments
(i.e. multiple workstations).

3 ALGORITHM

3.1 Heterogeneous parallel program framework

The work is distributed using MPI and a master-worker approach. The master process runs on a single
general purpose processing resource (CPU core in our case) of the cluster and is responsible for segment-
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ing the input image into tiles (work units), allocating work units to different MPI workers, and collating
the results back into the final image. Each worker process also runs on a single general purpose process-
ing resource and is responsible for requesting work units from the master, performing RL processing on
each allocated tile, and sending the results back to the master.

Simple load balancing is achieved using a FIFO queue within the master process, which receives and
responds to worker requests for work units as they are arrive from the MPI message subsystem. Non-
blocking (asynchronous) MPI transfers are used to send and receive tiles so that the master can continue
servicing work unit requests while the MPI subsystem concurrently transfers data. MPI implementations
providing hardware assisted buffer communication (e.g. Infiniband) can then be exploited where available
so that the CPU is free to continue other tasks. Of course, requests for work must also come through the
MPI subsystem, and hence, the level of concurrency achieved between the master’s work unit service
loop and the transfer of tile data is dependent on the MPI vendor’s implementation.

3.2 Hardware specific implementations and heterogeneity

To allow the RL algorithm to run on a range of computational resources (in our case CPUs and GPUs) we
consider tile processing in two parts; 1) the RL algorithm’souter loop, which repetitively calls a single
iteration of the core RL operations (increasingr in Eq. 3), 2) the RLcore operationsthemselves (Eq. 3
and 4). Both CPU and GPU versions of the the core operation code are implemented on our system. At
run time, each MPI worker decides independently what type of processing resource (processor hardware)
they will execute their core RL operations on, and selects the appropriate implementation for use within
the outer loop. The RL algorithm’s outer loop is executed on the processing resource on which the MPI
worker is running (generally a host’s CPU core) and calls the core operation implementation chosen
above. This can be managed easily in languages like C and C++ using function pointers, otherwise, one
can use flags and conditional statements to call the appropriate core operation code.

Both the CPU and GPU core operation code follow the same general structure shown in Algorithm 1. In
both cases we utilise optimised third party FFT libraries as black boxes to perform the Discrete Fourier
Transforms; Intel MKL for the CPU and NVIDIA CUFFT for the GPU. Operations responsible for the
element wise division and multiplication of complex and real matrix values are performed using in house
code. Emphasis was placed on simplicity of implementation of these operations, thus, more efficient
implementations might be available, particularly in the case of the CPU where vector instruction code
and libraries could be used.

For the CPU core operations we utilise a single thread, because running an N thread FFT algorithm is
usually less efficient than using N independent workers running single thread FFTs for sectioned de-
convolution Domanski et al., (2009a) due to the overhead and imperfect scaling of multi-threaded FFT
algorithms. For the GPU code, elementwise matrix operations are performed using custom written GPU
kernels. Working data is left in GPU memory between custom kernel and FFT library calls and also
between algorithm iterations. This avoids unnecessary transfers between host and device memory.

3.3 Compute resource management

With recent increases in the number and type of processors and commodity systems with heterogeneous
processing architectures, workstations and distributed memory clusters containing a range of processor
types are becoming more prevalent. It is often desirable to make use of different processor architecture
for different tasks, or to utilise all available processing resources simultaneously to perform and single
larger task. Our heterogeneous RL implementation ensures workers take full advantage of available
processing resources on the cluster, while avoiding resource contention and over subscription. To achieve
this we have implemented a simple resource managagement and allocation system that does not require
the master process to have knowledge of the available computer resources on the cluster, nor for the
workers to know explicitly what host they are running on, or to communicate explicitly what they are
doing to other workers.

Workers use a resource discovery function and operating system level counting semaphores to lock avail-
able resources. The discovery function simply returns a count of each type of processing resource on the
worker’s host node. Semaphores guarding each type of resource are created, and workers try to claim
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processing resources by inspecting and waiting on the appropriate semaphores, starting with resources
that have the most efficient RL implementations and progressing to slower implementations if resources
are unavailable. The value of the semaphore at the time of the wait success indicates to the worker which
enumerated resource of a particular type it should use. This approach ensures that the resources on each
node are used in a combination that leads to the best performance, as the most efficient resources are
consumed first.

All workers in the MPI application use semaphores with the same name. Because semaphores are publicly
accessible locks at the scope of a host operative system, this effectively implements resource management
at the cluster node (host) level without workers being aware of what host they run on, or what workers on
other hosts are doing. They only try to get the best processor available based on the semaphores on their
host. The creation and initialisation of the semaphores are handled by the first worker to check on the
semaphore on each host. If the semaphore does not exist yet on the host, the worker assumes it should be
created and initialises it with the values returned by the discovery function.

Note that a worker utilising an non-host processor (GPU) for RL core operations also requires a general
purpose host resource (CPU core) to run the MPI worker and RL algorithm’s outer loop (Sec. 3.1). Our
resource management scheme can be modified easily to consider this processor usage. This is usefully
to ensuring host processing resources (cores) are not over subscribed if worker’s are using multiple host
cores to implement their RL core operations (e.g a multi-threaded CPU algorithm). Since we have chosen
to use a single thread CPU RL implementation (Sec. 3.2), we rely on the cluster’s batch system and MPI
parameters to allocate no more workers to a node than there are CPU cores. Thus, only GPUs are tracked
in our tests, with workers defaulting to CPU RL operations when GPUs are exhausted.
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Figure 2. Deconvolution performance results for heterogeneous and homogeneous processing of core
algorithm operationson 2D and 3D images. Number of algorithm iterations = 20.

4 RESULTS

Test were performed on a cluster of heterogeneous compute nodes, each containing 32GB of RAM,
dual-socket quad-core Intel Xeon E5462 host CPUs, and two NVIDIA M2050 GPUs attached via PCI-
Express bus. An Infiniband network interconnect was utilised with accelerated MPI library support. In
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addition to the heterogeneous mode presented, we tested CPU and GPU worker only implementations for
comparison. Each 2D and 3D image tested was broken into64×64 tiles in thexy plane. Image loading
was taken as constant overhead and excluded from the timings.

Figure 2 shows the performance of the various algorithm modes with increasing number of available pro-
cessing resources. The minimum number of cluster nodes were selected to provide the required number
of processing resources in each case, and differs between modes. In the case of 8 processing resources
for example, 1 node produces 2 GPU plus 6 CPU workers for a heterogeneous run and 8 CPU workers
for a CPU only run, while 4 nodes are required to produce 8 GPUs workers. Worker for worker, resource
for resource, the GPU implementation significantly outperformed the CPU version for 3D images, but at
the disadvantage of requiring four times more cluster nodes. The heterogeneous implementation’s per-
formance curve, however, tracked closer to the GPU only curve than the CPU only curve, but used the
same number of nodes as the CPU only run. This emphasizes the importance of utilising all available
processing resources on a node, and not just the fastest processors.

The performance improvement of the GPU and heterogeneous implementations over the CPU only ver-
sion in the case of the 2D datasets is far less impressive than the 3D results. This is probably related to
the selected title size of64×64 in 2D compared to64×64×16 in 3D, since GPU FFT algorithms tend
to provide greater speedups for larger problem sizes. Indeed, the performance improvement of a single
GPU implementation over a single CPU for anon-sectionedFFT-based RL algorithm on the tested 2D
images (not graphed) was between 8 and 13x. Therefore, better performance improvements are expected
by tuning tile sizes when the image size and PSF variation permits. Figure 3 provides scaling results for
the1024×1024 and1024×1024×16 images. For the 3D image the scaling of the CPU and GPU only
versions in fairly good up to between 16 and 32 processing resources (<4nodes for CPU only,<16 for
GPU only), but then starts to drop away from perfect scaling. Since this is an embarrassingly parallel
problem, it is expected that this is due to communication congestion at the master node, which is sending
work units to all workers as well as receiving their results. The heterogeneous algorithms scaling results
are difficult to understand and provide little insight before 8 resources, as the number of GPU and CPUs
only doubles simultaneously from 8 onwards. After this point the scaling is fairly good as above until 32
resources. Very poor to negative scaling past 16 resources in the 2D case indicates that the communica-
tion limitations are far outweigh the computational advantages. We plan to address this scaling issue in
Future work.

A disadvantage of utilising a simple FIFO queuing mechanism ignorant of worker processing speed for
work unit distribution (Sec 3.1 and 3.3) is that it cannot discriminate or prioritise the allocation of work
to faster processor types. This can result in situations where the final few work units might be allocated to
slower workers before faster workers request them, leaving a group of faster workers unutilised. This can
have a negative impact on overall execution time when the performance ratio between processor types is
high. A processor typet can potentially hinder execution time if there is less thann +

∑
i Rimi work

units to process, wheren is the number oft processors available,mi is the number of theith faster
processors thant available, andRi is the speed ratio betweenmi and t. In such cases only the faster
processor types should be used.
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Figure 3. Scaling results for heterogeneous and homogeneous processing of core algorithm operations
on 2Dand 3D images.
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5 CONCLUSIONS

A heterogeneous implementation of the Richardson-Lucy deconvolution algorithm which runs across a
cluster of workstations containing CPU and GPU processors was presented. Results showed that utilising
all available processor resources on a workstation, both CPU cores and GPUs, leads to greater perfor-
mance than utilising CPU cores alone. Where there is a high ratio of CPU cores to accelerator processors
in each node, the heterogeneous implementation produces performance close to the GPU (accelerator)
only version, while utilising fewer overall nodes. This is useful in small cluster installations, where avail-
ability of accelerators is limited, or in high load shared systems, where economical use of resources and
nodes becomes important for overall throughput.
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