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Abstract:

Recent efforts to directly or indirectly observe animal contact networks reflect an increasing awareness
that the spread of infectious diseases, and their control, can be critically affected by the contact structure
of the host population. This has long been realised for sexually-transmitted diseases of humans but
has also recently been shown for seasonal influenza, where only casual contact, or indirect contact, is
required for transmission. Many animals, though by no means all, are radically less mobile than humans
and their social contact networks are consequently spatial networks where each host can be assigned a
location in space and the rate of contact between two hosts depends on the distance between them. Such
contact networks have received little attention and are poorly understood. Here we present a model for
animal contact networks that allows for both spatial constraints and individual heterogeneity: let xi be
the sociability of host i, let kij be the rate of contact between hosts i and j, and let sij be the Euclidean
distance between i and j, then

kij = λ2e−λsijxixj ,

where λ determines the scale over which the spatial constraints operate. To study the transmission of an
infectious agent on large scale realisations of these network models we use long-range percolation. That
is, we relate the probability of an open, directed edge between i and j, given i is infected, to the contact
rate between the two hosts by

pij = 1− e−vkijτi ,

where v is the probability of actual transmission given contact occurs and τi is the infectious period of host
i. We define outbreaks in terms of spatial spread: occurring when the distance between a newly infected
host and an initially infected host exceeds certain milestones. The preliminary results presented here
show that for at least this model of contacts (i) the stochasticity in model behaviour is a combination of the
spatial constraints and the variance of the xi rather than just the variance of the xi, and (ii) stronger spatial
constraints on contact rates tends to nullify the effect of individual heterogeneity to increase pathogen
spread. We would hence argue that tailored methods of network analysis are needed that can quantify
the role of space in determining contact rates between animal hosts. At both a national and global scale,
public health and veterinary authorities periodically face challenges from new pathogens that arise in
wildlife and livestock populations. These can pose a threat to human health, such as in the case of
recent and recurrent outbreaks of Hendra virus, or, in the case of the Devil Facial Tumour Disease, they
may threaten native species. Our preparedness and ability to control such pathogens will be markedly
improved as we better understand the contact networks of animal hosts, and the implications of their
structure for the spread of infectious disease.
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1 INTRODUCTION

The recent flurry of field studies on wildlife contact networks (see Bohm et al. [2009]; Craft et al. [2009];
Hamede et al. [2009]; Perkins et al. [2009]; Porphyre et al. [2008]) have been motivated by a general
interest in the epidemiological consequences of such networks, or by an interest in a particular pathogen
that is endemic in the population being observed. Underlying such studies is an increasing awareness that
the dynamics of infectious diseases, and their control, can be critically affected by the contact structure
of the host population. For example, it is now well understood that human sexual networks have degree
distributions with relatively fat tails (Liljeros et al. [2001]) which has important implications for the
dynamics and control of sexually transmitted diseases (May [2006]). More recently, epidemiologists are
understanding that there can be equally important consequences where only casual contact, or indirect
contact, is required for transmission. In a fascinating study, Christakis and Fowler [2010] found that even
in the case of influenza, where the contacts required for transmission are of a very casual nature, the
social network topology can be used to achieve early detection. This is done by monitoring the friends of
randomly selected individuals, a tactic that succeeds because highly connected individuals are both likely
to be monitored and are typically among the first to become infected.

Less is known or understood for disease systems of wildlife. Two of the recent studies on wildlife contact
networks, reported by Porphyre et al. [2008] and Bohm et al. [2009], have been motivated by concern for
bovine tuberculosis and both reported high individual heterogeneity in the observed contact rates. This
is important because individual heterogeneity creates a contact network that is easier for a pathogen to
spread through, compared to one in which there is low or no variation. A feature of animals though is
that they are far less mobile in comparison to modern humans, and they are often territorial. That is, two
animals may normally have contact only if their home ranges overlap, with exceptions arising from long
distance dispersal events. In such cases, the contact networks will reflect strong spatial constraints on
who in the population has contact with whom, the extreme case being that contact only occurs between
animals having adjacent territories. This means that some pathogens of wildlife will have a spatial barrier
to overcome. That is, they must transmit enough to escape local build up of infected and recovered
animals which can lead to early fade-out.

An example of a pathogen that faces strong spatial constraints in some of its host populations is sylvatic
plague (Yersinia pestis infection in wildlife hosts). In particular, Davis et al. [2008] showed that for
plague in great gerbils in Central Asia, there is empirical evidence for a sharp difference between the
scale at which flea movements occur (these are necessary for transmission between family groups of the
rodent host and they are almost always <200 metres) and the scale of the landscapes occupied by the
rodent species and monitored for plague by public health authorities (these areas are hundreds of square
kilometres). One approach to modelling such systems is long-range bond percolation, where hosts are
the nodes of a (spatial) network and bonds (or open edges) between nodes represent transmission of the
pathogen (in the case of plague, an infectious flea has been transported between family groups).

Here we use long-range bond percolation to investigate pathogen dynamics on model contact networks
that include both spatial constraints and individual heterogeneity. The algorithm used to generate contacts
makes use of the good-get-richer mechanism proposed by Caldarelli et al. [2002] where each node is given
a “fitness” value generated from a probability distribution ρ(x) and the rate of contact between two nodes
is determined by the sum or product of these values. In this context the values represent sociability, an
intrinsic willingness to make or have contact with others. Fitness is a misleading label that we will not
use from this point on and replace with sociability. The model proposes that the rate of contact between
two animals depends on the sociability of both. This is intuitively appealing for contacts of wildlife.
Furthermore, Caldarelli et al. [2002] showed that the good-get-richer mechanism can give rise to a wide
range of network types, including scale-free networks from non-scale-free distributions for ρ(x).

2 THE NETWORK MODEL

Consider a population of hosts, each with a (unique) location in an area A. This position represents a
central location for the host, but hosts are not fixed in space and they move freely about such that contacts
occur. Let the spatial arrangement of these central locations for the hosts in A follow complete spatial
randomness, defined by Diggle [2003], with each point being an independent random sample from the
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uniform distribution on A. For each pair of hosts, i and j, let the rate of contact between them be given
by kij , and let sij be the Euclidean distance between their central locations. For contact rates giving rise
to purely geographical networks,

kij = e−λsij , (1)

where λ essentially determines the spatial scale at which distances between nodes begin to affect their
rate of contact.

Several studies of wildlife contact networks though, suggest substantial variation between individual
animals in the rates of contact and the numbers of contacts. One way of incorporating such heterogeneity
is to assign a ”fitness” to each host that represents the sociability of that animal, its willingness to either
initiate contact with other individuals in the population or to respond favourably when approached. Let
xi then be the sociability of host i, a random number drawn from a probability distribution ρ(x), and
consider

kij = f(sij , xi, xj). (2)

Such an expression for the kij effectively adds geographical constraints to the good-get-richer mechanism
proposed by Caldarelli et al. [2002]. In this paper, we consider the particular model

kij = λ2e−λsijxixj . (3)

We make this choice because it has the useful property that E[ki] = E[
∑
j kij ] is independent of λ (see

Appendix). This is useful because varying λ does not change the average degree of the contact network
(or the total contact rate of the network). It does mean, though, that for sharper spatial constraints (higher
values of λ) hosts will tend to have higher contact rates with their closer neighbours to make up for the
loss of contacts with more distant neighbours. And hence, the mean number of new contacts does change
with λ.

We choose the gamma distribution for ρ(x) as a flexible, 2-parameter distribution. This allows us to
change the variance of the xi while keeping the mean value of xi constant and (consequently) keeping
the average degree of the contact network constant (Appendix).

3 LONG-RANGE PATHOGEN PERCOLATION

To study the spread of a pathogen on the family of contact networks just described we consider long-
range percolation where we let pij be the probability of an open edge between node i and node j. This is
a directed edge and the probability is a conditional probability – the probability of transmission from host
i to host j given that host i is infected. Note that an open directed edge from i to j does not imply an open
directed edge from j to i. The relationship between the contact rate of hosts i and j and the conditional
probability of transmission from i to j is,

pij = 1− e−vkijτi (4)

where v is the probability of actual transmission of the pathogen given contact occurs and where we have
introduced τi to represent the length of time that host i is infectious. The τi are assumed to be identically
and independently distributed. The product vkijτi is the density of a Poisson process, representing the
average number of infectious contacts between i and j that occur over a time period of length τi. The
equation for pij is the probability that there is at least 1 such infectious contact. In this paper we consider
only the case of a fixed infectious period (τi = τ ) so that the individual heterogeneity in the model arises
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only from variation in the local spatial arrangement of hosts and from variation in the sociability values
(the xi) of the hosts.

We simulate outbreaks by “seeding” the network with a single infectious node. In the simulations our
spatial networks are finite and we therefore choose a central node - chosen randomly but within a relatively
small distance from the network centre - to begin the epidemic. For each simulation we then draw open
edges, starting from the initially infected node and using the probabilities given by equation (4). We
explore the open cluster that the initial node belongs to by following all open edges and labeling the end
nodes as infectious. For each infectious node we again apply equation (4). When all open edges are
explored and there are no more infectious nodes then the extent of the epidemic is known and the set of
nodes that have been infected defines the open cluster to which the initially infected node belongs. The
size of the cluster corresponds to both the severity of the epidemic and its spatial extent. Alternatively,
simulations come to an end when the conditions (see below) that define an outbreak have been satisfied.

4 OUTBREAK DEFINITION AND PERCOLATION THRESHOLDS

In disease systems where hosts are randomly mixing, predicting whether a pathogen will spread or fade
out equates to estimating the quantity R0, which is defined as the expected number of secondary cases
from a single primary case in a fully susceptible population. If this number is greater than 1, then the
number of infected is expected to grow, but if it is less than 1 then an infected, on average, will not replace
itself and there will be no outbreak.

In the context of spatial spread the percolation threshold, denoted pc, has a similar threshold effect to
R0 = 1. Given an infinite spatial network and a regular arrangement of nodes where pij = p for
neighbouring nodes and 0 otherwise, then the percolation threshold has the property that for p > pc there
is a positive probability that an arbitrary node belongs to an infinite open cluster. For values of p less than
pc the probability that an arbitrary node belongs to an infinite open cluster is 0 (for a thorough treatment
of the topic see Grimmett [1999]). For long-range percolation – where open edges between nodes that
are not nearest neighbours are allowed – then, referring to equation (4) we can, for example, define vc as
the critical probability of transmission, below which an infinite open cluster does not occur.

In either contexts, whenR0 > 1 or when p > pc the appearance of a single infection does not imply there
will be an outbreak, or even that an outbreak is the most likely outcome. The only implication is that it is
possible for a single infection to then lead to an infinite number of cases (if there were an infinite number
of hosts).

For spatial spread of a pathogen, it is natural to define successful spread in terms of spatial criteria such
as the distance between newly infected hosts and the initially infected host reaching certain milestones,
rather than the number of infected hosts per se. We choose this approach here, though it introduces a
level of arbitrariness. Without specifying a particular scale, we set A to be 100,000 square units and the
node density to be 1.5 nodes per unit area (implying a spatial network of 150,000 hosts). We also set
τi = τ = 2 and E[xi] = 1/3 where there is also a level of arbitrariness except in the sense that together
with λ = 0.75–1.75 and a coefficient of variation for the xi between 0 and (approximately) 3, they placed
the model into a region of parameter space that gave interesting behaviour.

Figure 1 shows the results of simulations where v was varied from 0 to 1 in steps of 0.01 for 6 combina-
tions of the scale parameter λ (0.75, 1.25 or 1.75) and the co-efficient of variation for the xi (0, 1.7 or 3).
The proportions of the simulations which resulted in new infections 37, 74, 111 and 148 units from the
centre of the landscape were recorded after 500 simulations (v is fixed for the 500 simulations). To save
computing time, if for a particular value of v the proportion of simulations for new infections 37, 74, 111
and 148 units away from the centre were the same (this means that every time a new infection occurred
more than 37 units away then a new infection also appeared more than 148 units away) then simulations
for higher values of v were not done. Visually, referring to Figures 1b-g, this value of v is where the
four coloured curves converge. The results show that for some parameter combinations the 4 curves con-
verge very quickly, and for others there is considerably more stochasticity in the model behaviour, i.e.
the curves do not converge quickly or do not converge at all. Results for higher values of λ (stronger
spatial constraints on contact rates) suggest that the effects of increasing individual heterogeneity are
considerably dampened.
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Note that we have not attempted to determine vc. Inspection of the sets of curves in Figure 1b–g would
suggest that a vc could be estimated from (some of) them. It is worth noting that a simple estimate for
R0 on a network is vτ k̄, where k̄ is the mean contact rate. This would imply the same threshold value
(vc = 1/(τ k̄)) for all of the scenarios in Figure 1. This is because τ is fixed and k̄ does not change with
either λ or Var[xi].

5 CONCLUSIONS

Emerging infectious disease events are increasing at a global scale (Jones et al. [2008]) with the majority
(71.8%) of them originating in wildlife. In Australia, conservation and public health issues have recently
arisen from novel pathogens such as Tasmanian Devil Facial Tumour (Hamede et al. [2009]) and Hendra
virus in bats of the genus Pteropus (Halpin et al. [2000]). When faced with novel pathogens epidemiol-
ogists are very often concerned with R0 as this quantity can determine (i) the effort required to control
a pathogen in a particular host population, and (ii) the range of host populations and circumstances for
which the pathogen is expected to invade. However, the dynamics of pathogens in animal host popula-
tions that are territorial or simply much less mobile than humans are poorly predicted by R0. The model
presented here is a step towards (i) encouraging field workers to measure the presence of strong spatial
constraints on contact rates, and (ii) understanding better how to interpret such spatial information for the
management and control of infectious disease.
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Figure 1: Long-range percolation results for the spatial good-get-richer model for 9 combinations of the
scale parameter λ and the co-efficient of variation for the xi. The landscape (a) is 100,000 square units
and the density of nodes is 1.5. The coloured circles represent the milestones used to track the size of
the outbreak (the open cluster to which the initially infected node belongs) and respectively represent
the infection traveling 37, 74, 111 and 148 units from the centre of the landscape. The proportions of
simulations for which the infection passes each milestone is given by the curve of the corresponding
colour in b-g. The combinations of λ and the co-efficient of variation for the xi, listed in alphabetical
order and corresponding to b through g, were: (0.75, 0), (0.75, 1.7), (0.75, 3.0), (1.25, 1.7), (1.25, 3.0)
and (1.75, 3.0). *Note the different scale for the vertical axis.
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6 APPENDIX

We show here that E[ki] = E[
∑
j kij ] is independent of λ when the kij are given by (3). Making this

substitution we have,

E

∑
j

λ2e−λsijxixj

 = E[xi]E[xj ]E

∑
j

λ2e−λsij


= x̄2E

∑
j

λ2e−λsij


where we have introduced E[xi] = x̄ and used the independence of the xi, the independence of the
positions of the nodes, and the independence of the xi from the positions of the nodes. We now consider
this quantity when A is infinite. Let H(s) be the average number of nodes that are at distance sij from
an arbitrary node in A (where the average is taken over all nodes in A). Here we may write,

x̄2E[
∑
j

λ2e−λsij ] = x̄2

∫ ∞
0

λ2e−λsH(s) ds.

The positions of the nodes in A are each an independent random sample from the uniform distribution on
A. This is equivalent to the number of nodes falling in an area |A′| following a Poisson distribution with
intensity c|A′| with c a constant (see Diggle [2003]). Consider then the expected number of nodes in the
area between a circle of radius s and a circle of radius s+ δs. This is

E[number of nodes] = c
(
π(s+ δs)2 − πs2

)
= c

(
2πsδs+ π(δs)2

)
∼ 2πcs as δs −→ 0

With H(s) = 2πcs then;

∫ ∞
0

λ2e−λsH(s) ds = 2πcλ2

∫ ∞
0

se−λs ds

= 2πcλ2

[
e−λs

λ2
(−λs− 1)

]∞
0

= 2πcλ2 1
λ2

= 2πc

This leaves E[ki] = E[
∑
j kij ] ≈ 2πcx̄2 (it is an approximate relationship for a finite region A), which

is independent of λ.
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