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Abstract: Zoonotic pathogens such as Campylobactor are a major contributor of human disease 
notifications in countries with agricultural economies, such as New Zealand. Understanding the mechanisms 
by which Campylobactor persist in animal reservoirs is key to designing effective intervention strategies. A 
model of Campylobacter transmission within a dairy herd was developed based on a Susceptible-Infected-
Recovered (SIR) modelling framework. The model incorporates stages of disease progression and includes a 
compartment (W) that tracks Campylobacter concentration in the environment. The model was used to 
perform simulations but is yet to be tested against observed data. Threshold parameters for invasion such as 
the basic reproduction number, R0 were estimated to be about 0.19, indicating that one infectious individual 
would on average infect 0.19 susceptible animals and the disease would thus not be able to establish itself. 
The variation of short term dynamics with epidemiological parameters was examined. The model has been 
developed with a long-term view of understanding and incorporating seasonal and climate change factors. 
Methods for incorporating these factors into the model are discussed.  
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1. INTRODUCTION 

Zoonotic pathogens such as Campylobactor are a major contributor of human disease notifications in 
countries with agricultural economies, such as New Zealand. Epidemiological models based upon the 
Susceptible-Infected-Recovered (SIR) framework offers useful insights into these diseases and their 
transmission in human populations. McBride and French (2006) developed a linear model of a human 
population exposed to Campylobacter, through both food and environmental routes, based on the SIR 
framework. The model accounted for age-dependency and differential immunity within groups of people. 
McBride (pers comm.) extended this work to include the effects of climate change on reported human 
campylobacteriosis rates. Tien and Earn (2010) extended the classical SIR framework by adding a 
compartment (W) that tracks Campylobacter concentration in the water environment. Invasion threshold 
parameters were computed from the resulting SIWR model. 

Zoonotic pathogens (e.g., E. coli, Campylobacter, oocysts of Cryptosporidium, Salmonella) are commonly 
found in cattle. Understanding the mechanisms by which these pathogens persist in animal reservoirs is vital 
to the design of effective intervention strategies. Epidemiological models based upon the SIR framework 
have provided useful insights into infectious diseases and their transmission over farmed landscapes. Xiao et 
al. (2005) developed an SIR mathematical model of the dynamics of Salmonella infections in dairy herds. 
Multiple groups (unweaned, weaned, dry and lactating) of animals were considered. Matthews et al. (2008) 
developed a model that captured within-herd transmission dynamics of toxic E. coli O157, herd-to-herd 
movement of infected animals and reservoirs of infections. This information was used to determine 
thresholds for persistence of these E. coli in a metapopulation of herds. They found that equilibrium 
prevalences in the Scottish national herd were sensitive to key parameters – herd-to-herd movement rates, 
group size and the within-group reproduction ratio/number, R0. Chapagain et al. (2008) developed a 
mathematical model of the transmission dynamics of Salmonella to describe an outbreak that occurred in a 
Pennsylvania dairy herd. Multiple stages of infection were considered and R0 was calculated and related to 
intervention strategies. Marshall and French (2010) developed a model of Campylobacter carriage and 
transmission between and within animal groups. Estimates of direct and indirect transmission based on a 
simple deterministic single-group model were extended to a multi-group model by apportioning the indirect 
rates between the local (such as in water troughs, pasture, or on equipment) and general environments based 
on how much between-group transmission was expected to occur. Seasonality due to maturation of the 
animals, which is dependent on date of birth of the animal and various maturation ages were incorporated 
into their model. 

The objective of this paper is to develop a model of Campylobacter transmission within a dairy herd. The 
model incorporates n stages of disease progression and includes a compartment (W) that tracks 
Campylobacter concentration in the environment. The model is an extension of the classical SIR model and 
is referred to by Tien and Earn (2010) as part of a family of SInWR models. The model was used to perform 
simulations and is yet to be tested against observed data. The basic reproduction number, R0 is calculated. 
The variation of short term dynamics with epidemiological parameters and the variation of R0 are examined. 
Parameters sensitive to climate change are discussed and methods for deriving expressions for time-
dependent threshold conditions, R0 are discussed with a view to extending the model to understand and 
incorporate seasonal variation and climate change factors into future models.  

2. THE MODEL 

The model used was a state-transition model adopted from Chapagain et al. (2008) and Xiao et al. (2005) for 
modelling Salmonella in dairy herds. It has been possible to adopt this model for modelling Campylobactor 
because the transmission parameters are not given in any explicit form. Note that there is much work done in 
New Zealand on Campylobactor in the environment and in animals. There is however, not much Salmonella 
in cattle in New Zealand largely because animals feed on grass in New Zealand and Salmonella is often 
spread with contaminated animal food.  

The model is an extension of the SIR model given in Lloyd (2001), for n stages of the disease with changing 
infectivity. This model arises out of replacing the infectious period distribution from a usual exponential 
distribution to a gamma distribution.  

The animals are grouped into three compartments according to their Campylobacter infection status. In the 
presence of the disease the total population of the herd (N) is composed of three population classes: 
susceptibles (denoted by S), infected (denoted by I) and immunes/recovered (denoted by R). The infected 
animals progress through several (n) stages of the disease. Indirect transmission due to free-living bacteria in 
the environment is modelled by including the density of pathogen in the environment (W) and is a function of 
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the total number of infected animals shedding the bacteria and the bacteria survival rate in the environment. 
For convenience, a latent period after infection is not considered in the model. Figure 1 shows a flow diagram 
for the transmission dynamics described by the resulting SInWR model system, where the rate coefficients nγ  
result from a gamma distribution assumed for the infectious period. 

 

 

 

 

 

 

 

 

 

 

Figure 1. The SInWR modelling structure representing the transmission dynamics of Campylobacter in a 
dairy herd modelled by the system of equations (1)–(5). Green box = susceptibles (S). Red box = infectious 
(I); Orange box = immune/recovered (R); Blue box = Environment (W). 

The dynamics of host and pathogen incorporating multiple stages is given by the model: 
 

 (1) 

 (2) 

 (3) 

  (4) 

 (5) 
 

I is the total number of infective animals in various infectious stages, . The rates of transition 
between various compartments and model parameters (including definitions) are given in Table 1. Parameter 
estimates are from local New Zealand data, when available and from the literature. 

Table 1: Definition and parameter estimates for the model that describes a single-infectious stage model of 
Campylobacter in a dairy herd. The rate coefficients are given in units of per day.  

Parameter Symbol Value Sources/remarks 

Direct transmission parameter β 0.004 Marshall and French (2010) 

Birth and death rate coefficient μ 0.0004 Marshall and French (2010) 

Indirect transmission parameter η 1.3x10-

11 
Unknown. Assumed from Xiao et al. (2008) for 
Salmonella 

Rate coefficient of recovery from the infection γ 0.05 Marshall and French (2010) 

Rate coefficient of loss of immunity once infected φ 0.007 Unknown. Assumed from Chapagain et al. (2008) for 
Salmonella 

Rate coefficient of addition of pathogen to the λ 5.8x107 Marshall and French (2010) 
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environment due to shedding by infected animals 

Rate coefficient of pathogen removal from the 
environment 

δ 0.14  Marshall and French (2010) 

Methods for estimating some of these parameters are given in Chapagain et al. (2008). Transition rates may 
be estimated from faecal culture data. The distribution of the infectious period is fit with a gamma 
distribution in order to calculate the average infectious period, 1/γ and variance of the distribution, 1/(nγ2), 
where γ is the rate at which an infected individual recovers from the infection.  These two quantities give the 
number of stages that the single infectious compartment needs to be divided in the model described by the set 
of equations (1)–(5). The direct transmission parameter, β  is estimated from the number of infectious 
animals and total number of animals at a given time, and the force of infection, which gives the number of 
new infections in the sampling interval.  

Using the given parameters, the simulation was started at a time t = 0 with a set of initial conditions. The 
population size, N assumed is 100 and considered large enough. This is the size of a very small herd of 
animals. Note that because the model is deterministic and continuous, population size matters a lot. The 
consequences of small fluctuations are far bigger in smaller populations and in dealing with large 
populations; chance events will be averaged out before it effects determines any qualitative change in the 
system. Initially it was assumed that there are 50 susceptible individuals, zero recovered individuals, zero 
pathogen in the environment and 25 individuals in infectious stages one and two.  

The basic reproduction number, R0 (the spectral radius of the next generation matrix) is often used to assess 
the effect of various control strategies on the persistence of infection (Driessche and Watmough, 2002). The 
control strategies that reduce R0 below one are successful in eliminating the disease. R0 is influenced by the 
epidemiological factors and the variation in R0 with some of these factors needs to be considered. For the 
above system of equations, R0 is given by the following equation, derived by Chapagain et al. (2008): 

 (6) 

The system of nonlinear differential equations (1) – (5) was solved using a fourth-order Runge-Kutta method 
in the freeware package R developed by the R Development Core Team (2008). The numerical results were 
used to observe and quantify effects of epidemiological factors on the short-term behaviour of the system and 
on the basic reproduction number, R0. For a single infectious compartment, R0 > 1 when β > (γ + μ – λη/δ). 
Note that R0 in equation (6) is independent of φ, the rate of loss of immunity once infected.  

The model was used to perform simulations and has not yet been tested against observed data. 

3. RESULTS 

3.1. Numerical Simulations 

Using the given parameters, the simulation was started at a time t = 0 when there were initially 50 susceptible 
individuals, zero recovered individuals, zero in the environment and 25 individuals in infectious stages one 
and two (n=2). Figure 2 shows the typical behaviour of the numerical solutions observed.  
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Figure 2. Simulations of susceptible individuals, S(t), infected individuals, Recovered individuals, R(t) in 
two infectious stages I1(t) and I2(t), by time, t from to t = 0. The parameter values are given in Table 1.  
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3.2. Variation in short term dynamics with epidemiological parameters 

Figure 3 presents the dynamic behaviour of the model equations by varying the direct transmission 
parameter, β, the rate coefficient of recovery from infection, γ, and the rate coefficient of loss of immunity 
once infected, φ. All other parameters are fixed and given in Table 1. The results are given in terms of 
prevalence of infection (%) in a population N of 100. Again, there were initially, 50 susceptible individuals, 
zero recovered individuals and zero in the environment and 25 individuals in infectious stages one and two 
(n=2). Figure 2 shows the typical behaviour of the numerical solutions observed. 

 

 

 

Figure 3. The dynamic behaviour of the model equations by varying the direct transmission parameter, β, the 
rate coefficient of recovery from infection, γ, and the rate coefficient of loss of immunity once infected, φ . 
These are given in terms of prevalence of infection (%) in a population N of 100. 
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3.3. Threshold parameters for invasion 

The basic reproduction number, R0  is estimated from equation (6) to be 0.19 for n=2.  It is evident that R0 
increases with an increase in the number of infectious stages but not by very much with the given set of 
parameters assumed. The eventual estimate of R0 is about 0.2, indicating that one infectious individual would 
on average infect 0.2 susceptible animals. With this value of R0, the disease cannot have sustained 
transmission in the population and will become extinct.  

4. DISCUSSION 

It is evident from the derived basic reproduction number, R0 of about 0.2, that the dairy herds are not 
vulnerable to Campylobacter infection and persistence of the infection. There has been a paucity of rate 
coefficient and transmission parameter estimates in this study, some data obtained from Salmonella 
modelling. Better estimates of these parameters are required to refine the model and provide better estimates 
of R0. The model has been given a sensitivity analysis but has not been used to investigate a range of 
management and control scenarios. Several theoretical results have been obtained in conjunction with 
collecting further measurement data. These theoretical results are described below. 

Climate change can contribute significantly to the transmission of zoonotic diseases in livestock and SIR 
model parameters as yet have not been ‘indexed’ to include these factors. Gale et al. (2009) assessed the 
effect of climate change on livestock diseases by identifying the main factors through which changing 
climatic conditions affect the biology, transmission and epidemiology of zoonotic and other pathogens. 
Environmental conditions such as temperature, humidity and sunlight also affect the survival of zoonotic 
pathogens that are able to survive outside the host in the environment. Increased flood events and increased 
wetter conditions after flood events can provide a transfer mechanism both within and between farms to 
contaminate pasture and other areas where livestock have access and can lead to disease outbreaks.  

The algebraic expression of the basic reproduction number of the SInWR gives a synthesis of all epidemic 
parameters in the model. It is possible to determine the influence of these parameters on the basic 
reproduction number and this allows one to drive control measures to reduce the basic reproduction number.  

The direct transmission parameter β, as with other model parameters and rates are likely to be time dependent 
due to seasonal variations. These seasonal effects may give rise to temporal oscillations in the disease 
prevalence in the herd and can be incorporated into the model. Following Dietz (1976), the transmission rate, 
β can be assumed to be seasonally varying in time (with period 1 year), and a sinusoidal form is used to 
model it, e.g. β= β0(1+ϕ cos 2πt), where ϕ is referred to as the degree of seasonality and 0 ≤ ϕ  ≤ 1. By 
substituting β into equations (1) and (2), a periodically forced nonlinear system is obtained. It can easily be 
verified that all state variables in the new system remain non-negative. The behaviour of the SIWR system in 
the current study can be investigated with respect to the two parameters ϕ and β0 and a parametric portrait of 
the model presented to determine parameter sensitivities (see Yu et al. (1994) where this approach has been 
used for SIR models). Lloyd (2001) has discussed seasonal forcing for a similar SIR model with a number of 
infectious stages. 

Accurate estimates of the seasonal effects in the current study are not generally available but some estimates 
showing the variation of the transmission parameter β throughout the year for Salmonella are given in 
Chapagain et al. (2008). A time-dependent threshold condition, R0(t) is obtained for dengue fever epidemics 
by taking an intuitive approach when the transmission components and other model parameters are 
seasonally dependent and incorporate climate change effects (e.g. Coutinho et al. 2006). The sensitivity of R0 
with respect to abiotic conditions such as temperature and humidity may be determined explicitly using these 
results (Massad et al. 2011) and it may be possible to obtain time-dependent threshold conditions for the 
resulting seasonally forced SInWR model in the current study using some of these approaches.  
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