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Abstract:  Soil pH gradient is an indicator of microorganisms and bacteria population in root zones with 
effects on the growth of plants, such as grapevine (Fernandez-Calviño, 2010). The pH gradient analysis can 
be used to determine management strategies – root development and soil quality - to reach the most suitable 
balance for a specific vineyard. Custom built management strategies lead to high vineyard productivity and 
avoid undesirable environmental impacts caused by surplus-nutrient runoff into streams, ground water 
reservoirs and the micro-fauna population. However, the pH gradient in agricultural soil varies in a spatial-
temporal way, making its studies difficult and time-
consuming. Given this scenario, the interpolation techniques 
have been used to build spatial maps of soil attributes by 
sampled locations values. Such spatial maps give the soil 
condition of whole agricultural field, allowing the 
estimation of non-sampled locations values. A common 
methodology of spatial interpolation is the kriging, a popular 
statistical method that is grounded within the geostatistics 
field. Exemplifying, the Figure 1 shows the 2D maps of soil 
macronutrients spatial variability analyzed by kriging 
method (Cruvinel, 1999). The objective of this study is to 
evaluate the spatial variability of pH gradient in soil based 
on the use of geostatistical mapping obtained by pH 
measurements and semi-variogram models. For the analysis 
of the pH gradient, the soil samples were collected in 58 
points considering three different horizons:~5-15 cm, ~15-
25 cm, and ~25-35 cm depths.  To minimize error the soil 
pH gradient analyses were duplicated in the vineyard soils 
and at laboratory. The preliminary results have shown the 
existence of a significant pH gradient with values in the top 
layers of soil lower than the bottom layers. Therefore the pH 
level from top layers was more acid than the bottom ones. 
This study is part of “Enometrica Project”, which is an 
ongoing research project on micro-climate monitoring and 
modelling in vineyards and orchards to positively influence 
crop management and resulting quality production. 

Keywords: vineyards, soil pH, spatial variability, 
geostatistical maps, pH gradient analysis 

Figure 1. Illustration of spatial variability 
map of soil Phosphorus and Potassium 
concentration. Source: Cruvinel, 1999. 
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1. INTRODUCTION 

The correlations of physical, chemical and biological attributes of soils play a key role in the optimization of 
growth of plants, such as grapevines. The soil pH is an indicator of nutrient availability, and its analysis 
determines management strategies – soil amendments - to reach the most suitable balance for a specific vineyard. 
Custom built management strategies lead to high vineyard productivity and avoid undesirable environmental 
impact caused by surplus-nutrient runoff into streams and ground waters reservoirs. However, soil pH and other 
nutrients vary in a spatial-temporal manner, which makes studies in this area difficult. A good way to illustrate 
this variation is through soil pH mappings generated by geostatistical tools. These mappings provide an estimate 
of the uncertainty for the soil pH value at un-sampled locations, allowing the delineation or identification of these 
locations for decision-making purposes or simply monitoring (Goovaerts, 2001). Currently, stochastic simulations 
allow the generation of several models (images) of the spatial distribution of soil attributes that are consistent with 
available information. 

Geostatistics also provides descriptive tools such as semivariograms to characterize the spatial pattern of soil 
attributes categorical and continuous (Goovaerts, 1999). Several interpolation techniques, such as kriging, 
capitalize on the spatial correlation between observations to predict attribute values at unsampled locations using 
information related to one or more attributes. Knowledge of an attribute value, as soil pH level or soil compaction, 
for example, is therefore of little interest unless the location, time of measurement or both are considered for the 
analysis. In soil science, information is usually spatial and multivariate. Pioneering studies showed that the 
correlation between soil variables can change from one spatial scale to another, depending on the effect of 
fundamental physical processes. 

The spatial data analysis typically starts with the input of the data values. For both continuous and for categorical 
attributes, the spatial distribution of values is not random. Hence the observations close to each other, as in the 
soil, tend to be more similar compared to those further away. The presence of a spatial structure is a prerequisite 
for the application of geostatistics and its description is a preliminary step to predict spatial or stochastic 
simulation. 

The interpolation of the spatial pattern is a value estimation procedure of unsampled locations within a study area 
analyzed by sampled sites. Without interpolation, the study is restricted to the sampling sites and the entire surface 
analysis becomes unavailable. Since it is an estimation process, there is an error intrinsic to the process, becoming 
important its evaluation. The main interpolation advantages are the different manners in which the data could be 
visualized. The calculation of a certain property in a specific site, to aid in the spatial decision making process and 
there are several methods of analysis available for calculating the property. Therefore, for environmental 
remediation measures or simply for monitoring purposes, such as soil pH or soil contamination, the spatial 
interpolation is very useful.  

The interpolation assumes a point x0 as a reference and start comparing attribute values of the field with the values 
at other location, increasing the distance from the reference point. If such attribute has a positive spatial 
autocorrelation, in other words, the field is smooth; a value (Z(x)) near to reference point (z(x0) will be slightly 
different. To measure the amount, it is calculated by finding the difference and square it (Z(x) – Z(x0))

2. It can be 
done to any pair of points in the field (Longley, 2010). 

With the increase in distance, it is expected that the measure 
will probably increase too. A semivariogram shows the 
degree of spatial dependence among the sampling sites, 
which is generally an increasing monotonic (consistent) 
function that reaches a plateau. The ‘range’ is the distance at 
which the semivariogram reach this plateau. The value at 
which the semivariogram reaches the range is called ‘sill’ 
(Figure 2). Considering the distance of two points 
vanishingly small, the semivariance falls but there is a 
concept that it never quite falls to zero, even at zero distance. 
In other words, these two points would give different 
sampled values. This is known as the ‘nugget’ of the 
semivariogram and graphically this is the point where the 
semivariogram model intercepts the y-axis (semivariance axis). The nugget can be defined as the variation among 
repeated measurements at the same point (Longley, 2010).  

An interpolation problem requires some parameters of the theoretical semivariogram. Such parameters are 
selected form an experimental semivariogram γ(h) which is given by: 

 
Figure 2. Graphic illustrating the definition of 

range, sill, and nugget components.
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where i and j represent the location i and j, respectively, Z(i) is the value of the variable at location i, hij is the 
vector form point i to point j, and Nh is the number of pairs of data, the locations of which are separated by h.  

The experimental semivariogram analysis verifies if the available data match the assumptions for interpolation 
with analysis model. In this case, the chosen theoretical semivariogram model is fitted to experimental 
semivariogram samples generated by Equation (1).      

The semivariogram is obtained without considering the directions between the points that form a pair. As such, it 
is said to be an isotropic variogram. Sometimes there is considerable variation in behaviour in different directions 
and anisotropic semivariograms are created for different ranges of direction.  

Of all the common interpolation method, the kriging makes the estimation more convincing because it is grounded 
on the geostatistical principles. To make estimations using kriging method, it is required to reduce the 
semivariogram to a mathematical function, allowing the semivariance be evaluated at any distance and not only at 
intermediate points within distance ranges (buckets). Finally, the adjusted semivariogram is used to estimate the 
field values at points of interest.  

The pH levels have an effect on grapevine growth and nutrition (Bates et al., 2002) and, for this reason, it is 
important to analyze the soil pH gradient through the layers. This paper presents a case study to assess the spatial 
variability of pH gradient in vineyard soil through kriging-based geostatistical interpolation techniques. This study 
is part of “Enometrica” Project (Ghobakhlou et al., 2010) which is a research project on micro-climate monitoring 
and modelling, in vineyards and orchards to positively influence crop management and resulting quality 
production.  Monitoring is conducted through field Wireless Sensor Network (WSN) and data stored in a central 
database that populate computational models to optimise the vineyards production. 

2. MATERIALS AND METHODS 

The soil samples were collected from three different depths in 58 field locations of Kumeu River Winery, New 
Zealand. These depths were denominated: Horizon A (5 ~ 15 cm), Horizon B1 (15 ~ 25 cm) and Horizon B2 (25 
~ 35 cm). The analysis network was planned with a spacing between the sample points of 25±5 metres. The soil 
samples were extracted using a handmade auger designed by project members, with a diameter of 45 mm and to 
reach up to 50 cm depth. In addition, the pH level of each sample in field was measured using a portable pH 
meter - Field Scout pH 110 Meter Data Logger. For accurate locations a Garmin GPS60 was used to geo-
reference these locations. After this, the samples were packed in plastic bags for later laboratory analysis. The 
methodology used in laboratory followed the procedures provided by the Regional Council of New Zealand for 
soil and land monitoring (Hill and Sparkling, 2009). 

Using the field and laboratory pH database acquired, each set of data is fitted by different empirical 
semivariogram models. The data analysis was performed in four stages. Firstly, choose a desired mathematical 
semivariogram model. In this work, the models chosen were spherical, exponential and K-Bessel. These models 
influence the unknown values and the shape of semivariogram fitting curve. The geostatistical interpolation 
techniques used were ordinary kriging for the soil layers. Secondly, adjust the best anisotropy parameters to obtain 
the best fitting. This action is required because pH levels change not only with the distance but also with the 
direction. For comparison purposes, these parameter values were used for all three semivariogram models: 
spherical, exponential and K-Bessel. Third, evaluate the quality of the uncertainty models comparing statistical 
parameter values such as root-mean-square (RMS), average standard error (ASE), mean standard (MS), root-
mean-square standardized (RMSS). Finally, interpolate the pH mapping with the best evaluated model. 

The kriging method responds to both the proximity of the data points as well as to their direction. It also has a 
number of options that require the user greater attention. These features make the kriging method not a 'black box', 
in other words, it can not be run automatically, it requires user involvement in the estimation process. Therefore, 
kriging is a multistep process because it includes exploratory statistical analysis of the data, variogram modeling, 
creating the surface, and exploring a variance surface optionally. Its general formula is composed by a weighted 
sum of the data (Oliver and Webster, 1990): 
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where Z(s0) is the measured value at the ith location, λi is an unknown weight for the measured value at the ith 
location, s0 is the prediction location, and N is the number of measured values. With the kriging method, the 
weights are based on the overall spatial arrangement of the measured points and not on the distance between the 
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Table 1. Anisotropy Parameters adjusted for the field pH mapping. 

Database Horizon 
Angle 

direction
Angle 

tolerance 
Bandwidth 

(lags)

Field 
A 319º 45° 3 
B1 141° 45° 3 
B2 285° 45° 3 

Laboratory 
A 351° 45° 3 
B1 331° 45° 3 
B2 126° 45° 3 

measured points and the prediction location alone. The most common kriging types are the ordinary, the simple, 
the universal, the indicator and co-kriging. Due to all these features and tools, the kriging is the most used for 
applications in soil science and geology, mainly because in these areas there is a spatial correlation  with distance 
or directional bias in the data. In this work, the application is to analyze the spatial variability of soil pH gradient. 

The soil pH measurements can be understood as a scalar field which may assume different values in an 
agricultural field. However, it is possible to evaluate its variation into a soil volume that one may have in the 
vineyard field, based on its spatial variability values in a specific soil horizon taken at different depths. In fact, it is 
possible to verify the behaviour of such soil parameter variation by means of the information based on its gradient 
or gradient vector field. The gradient of a scalar field is a vector field that points in the direction of the greatest 
rate of increase of the scalar field, and whose magnitude is the greatest rate of change. 

The scalar field associates a scalar value to every point in a space. The scalar may be a physical quantity. Scalar 
fields are required to be coordinate-independent, meaning that any two observers using the same units will agree 
on the value of the scalar field at the same point in space. On the other hand, in vector calculus, a vector field is an 
assignment of a vector to each point in a subset of Euclidean space. A vector field in the plane for instance can be 
visualized as an arrow, with a given magnitude and direction, attached to each point in the plane.  

The elements of differential and integral calculus extend to vector fields in a natural way. The vector fields can 
usefully be thought of as representing the velocity of a moving pH flow in space, and this physical intuition leads 
to notions, which may represents the rate of change of the considered parameter, as well as the rotation of its flow. 

In coordinates, the gradient as a vector field on a domain in n-dimensional Euclidean space can be represented as a 
vector-valued function that associates an n-tuple of real numbers to each point of the domain. This representation 
of a vector field depends on the coordinate system in which it is being considered.  

Then the gradient can be obtained taking into account the available information supplied by the spatial variability 
maps obtained in three different depths of a soil horizon, i.e., horizontal information, for the vineyard field, as well 
as the virtual three dimensional solid and its faces, which is formed under the soil surface with such volume of soil 
delimitated by the georeferenced coordination’s of the agricultural field and its roots profile due the vineyard crop 
zones. Besides, by using the spatial variability information of the pH horizontal maps it is possible to visualize  in 
the vertical direction oriented in parallel with the soil depth the information of the pH gradient by considering the 
three-dimensional rectangular coordinates as: 

  ( ) ( ) ( ) ( )
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where î , ĵ , and k̂ are the standard unit vectors. 

The gradient can also be used to measure how a scalar field changes in other directions, rather than just the 
direction of greatest change, by taking a dot product.  

Thus, the gradient function of the soil pH is defined to be the vector field whose components are its partial 
derivatives. That is, the gradient is written as a row vector, but it is often taken to be a column vector. When a 
function also depends on a parameter such as time, the gradient often refers simply to the vector of its spatial 
derivatives only.  

3. RESULTS AND DISCUSSION 

Using ordinary kriging for the layers: 
Horizon A, Horizon B1 and Horizon B2, 
the anisotropy values used in 
interpolation are presented in Table 1. 
Those angle direction values were chosen 
by the best model fitting and adjustment 
based on the best choice of the 
interpolation model, as shown in Figure 
4. This is a feature of the ordinary kriging 
where it is possible to adjust the angle 
direction to the semivariogram when the anisotropy option was chosen. It is important to highlight that the 
different angle directions for the same horizons did not show similar pH values obtained by field and laboratory 
data collection. After performing these steps, the results were generated considering three different semivariogram 
models, which are presented in Table 2. The choice criterion of the most suitable mathematical model was: 

a) mean error near zero and the smallest RMS; 
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Figure 3. pH mapping from the laboratory data: (a) Horizon A; (b) Horizon B1 and (c) Horizon B2 

b) the ASE nearest the RMS; 

c) the standard error (RMSS) nearest one. 

These criteria were based on the fact that although the minimum RMS leads to conclude that the method is great 
but it is not possible to affirm that it is a valid method. When an unknown point prediction is performed, there is 
only the estimated standard error to assess the uncertainty of that prediction. On the other hand, when the ASE is 
close to RMS form the cross-validation results, the prediction standard error is appropriated. Therefore, the latter 
had a greater weight in the decision. The method and the value chosen are represented by the red colours within 
Table 2.  

Table 2. Statistical values from three different mathematical methods: spherical, exponential and K-Bessel. 

Database Horizon Method Mean RMS ASE RMSS 

Field 

 
A 

Spherical 0,0089 0,3365 0,3011 1,0970 
Exponential 0,0133 0,3444 0,3036 1,1120 

K-Bessel 0,0069 0,3450 0,2932 1,1580 
 

B1 
Spherical 0,0068 0,3601 0,3638 0,9843 

Exponential 0,0093 0,3591 0,3772 0,9452 
K-Bessel 0,0066 0,3605 0,3611 0,9916 

 
B2 

Spherical 0,0082 0,4469 0,4237 1,0510 
Exponential 0,0080 0,4461 0,4273 1,0420 

K-Bessel 0,0076 0,4478 0,4216 1,0580 

Laboratory 

 
A 

Spherical 0,0006 0,1622 0,1636 0,9936 
Exponential 0,0004 0,1644 0,1687 0,9759 

K-Bessel 0,0002 0,1620 0,1614 1,0070 
 

B1 
Spherical 0,0007 0,1795 0,1705 1,0450 

Exponential 0,0006 0,1842 0,1780 1,0290 
K-Bessel 0,0012 0,1827 0,1746 1,0330 

 
B2 

Spherical 0,0085 0,3102 0,3281 0,9542 
Exponential 0,0095 0,3124 0,3305 0,9542 

K-Bessel 0,0094 0,3111 0,3277 0,9581 
 

Table 2 has shown that K-Bessel method was the best for horizon B1, the Exponential method for horizon B2, the 
spherical for horizon A, all from field database. For laboratory database, the Spherical method was the best for 
horizons B1 and B2, and K-Bessel for horizon A. With the respective chosen methods, the pH mapping from field 
and laboratory database is illustrated by Figures 3, 5 and 6, respectively. 

When comparing the results generated by field and laboratory experiments (Figures 3, 5 and 6), it is possible to 
note a greater pH variation from the laboratory data in relation to one obtained on the field. This behaviour was 
expected because on the field the measurements were collected with soil in its natural conditions, such as 
temperature and moisture. In addition, the measures were obtained from direct contact of the soil and the sensor 
while in laboratory the samples were processed on the same way (dry, grind and measure), then dissolved in 
water before measuring the pH level. The modelling analysis has shown to be adequate and important to give 
more feasibility to prediction mapping.  

The next stage was to analyse graphically the soil pH gradient seen by the aspect of depth. In other words, the 
soil pH variation was observed on the vertical plane. For this purpose, two faces of the Kumeu vineyard in two 
different slices: one in the face of the volume of soil under the vineyard crop and other at the intern of such soil 
volume, were studied. The field data collection was chosen for the analysis due the pH value on the soil natural 
condition. For this initial analysis the ordinary kriging with the K-Bessel method was used. The Figures 6 and 7 
illustrate the results of soil pH gradient.  
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Figure 5. Kriging maps of soil pH gradient on the two Kumeu external faces. The faces are illustrated by 
black colour line. 

 
Figure 6. Kriging maps of soil pH gradient on the two Kumeu internal faces. The faces are illustrate by blue 
colour line 

 
Figure 4. Kriging Semivariograms - Field data: (a) Horizon A, (b) Horizon B1, (c) Horizon B2; 

Laboratory data: (d) Horizon A, (e) Horizon B1, (f) Horizon B2 
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4. Conclusion  

The results showed a slight difference between the soil layers. The analysis of locations with two different 
depths shows that the top layers have lower pH levels (i.e. more acidic) than bottom layers, in general the top 
layer is more acidity. Due the leaves emanating from pruning vines to decompose in the upper layer of the soil 
causes the pH of the upper soil layers have a more acidic profile in relation to the lower layers. Probably, in the 
course of time, due to sorption processes between the organic fertilizer and the volume of soil below surface, the 
acidity is being increasing and one may reached a soil pH gradient profile in the Kumeu Vineyards. 

These initial results will be used in the “Enometrica Project” together with chemical soil analysis and other 
information as climate, plant and productivity database to complete decision making support for vineyards 
productivity.  
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