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Abstract: It is well known in the forecasting literature that combining forecasts from different models
can often lead to superior forecast performance, at least in the Mean Squares Error (MSE) sense. It
has also been noted that combining forecasts by simple averaging often performs better than more so-
phisticated weighting schemes, although simple averages tend to ignore correlations between forecast
errors. However, it is unclear whether these stylized facts hold under different forecast criteria. This is
particularly important when evaluating the performance of Value-at-Risk forecasts where MSE is not an
appropriate measure. In practice the VaR performance is measured against the Back-testing procedure as
outlined in Basel Accord. Given the role of VaR in risk management, it would be important to investigate
if forecast combination provided any benefit in forecasting VaR. An interesting implication of this study
is that, if forecast combination does in fact provide superior VaR forecasts over individual models, then it
also provides a convenience way to combine qualitative forecasts (from expert opinion) and quantitative
forecasts (from quantitative models). The combination of qualitative and quantitative forecasts may in
fact, enhance the forecast accuracy of VaR further.

The aim of this paper is to provide an empirical evaluation of forecast combination for Value-at-Risk.
Value-at-Risk forecasts based on four different volatility models, namely, EGARCH, IGARCH, Stochas-
tic Volatility, will be constructed and combined. The forecast performance of the combined forecasts
will be compared to the forecast performances of each of the individual models. Two weighting schemes
are being considered in this paper, namely, simple weighted average and Quantile Regression (QR). The
empirical performances of these forecasts will be based on the percentages of violation as proposed in the
Basel Accord with two sets of daily data, namely FTSE and S&P 500, for the period 3rd January 1996 to
3rd August 2010.

The results show that, overall, (i) forecast combination performed better than individual models and (ii)
simple weighted average performed better than QR. These results are consistent with the stylised findings
in the forecast combination literature. Thus, the paper provided empirical evidence supporting the use of
forecast combination in forecasting VaR thresholds.
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1 INTRODUCTION

Modelling and forecasting the distributions of assets’ returns have become increasingly important over
the last two decades. Specifically, the ability to accurately capture the negative tail of the return distribu-
tions will allow more accurate forecast of risk associated with the assets. Although serious efforts have
been devoted in this area, the accuracy in forecasting the negative tail of the return distribution is far from
satisfactory, as shown during the Global Financial Crisis. Specifically, while there have been numer-
ous models proposed in the literature to forecast Value-at-Risk and Conditional Value-at-Risk (expected
shortfalls), these models often suffer from numerical difficulties due to the curse of dimensionality or they
do not perform satisfactorily consistently. Moreover, it is more difficult, if not impossible, to incorporate
qualitative information into these models.

A possible solution to improve forecast accuracy is to incorporate a methodology which has shown to
be exceedingly successful in a diverse range of forecasting applications. This methodology involves the
aggregation of a number of independent forecasts into a forecast combination. Since the seminal works
on the subject by Bates and Granger (1969) there has been an extensive body of literature developed on
forecast pooling. It is the general consensus of this literature that, given the combination of forecasts
from sensible models, the combination of forecasts outperforms individual forecasts. The primary focus
of this paper is to investigate the potential benefit of applying forecast combination in volatility fore-
casting. The results from this paper will contribute to the literature in two ways. Firstly, the success of
forecast combination lacks theoretical justification. There are very limited theoretical results explaining
why and how do forecast combination work. Given the forecast criteria used in this literature are often
restricted to the standard measures, such as Mean Square Errors (MSE), it is unclear if the superiority
of forecast combination depends on the forecast criteria. Since MSE is not appropriate to evaluate the
performance of VaR forecast, it provides an ideal platform to examine the performance of forecast com-
bination with non-standard forecast criteria. Secondly, if forecast combination is shown to be beneficial
for improving VaR forecast, then it will provide academics and practitioners a more flexible methods to
understand the characteristics of the conditional return distribution. This increased awareness will allow
for more accurate financial management as well as further developments in econometrics and modelling
methodology.

The paper is organised as follows: Section 2 will introduce the forecast combination problem for VaR,
Section 3 will introduce the four models used in this study and a brief discussion of the data. This is
followed by the empirical findings in Section 4 and some concluding remarks can be found in Section 5.

2 COMBING FORECASTS FOR VAR

This section introduces the forecast combination problem for Value-at-Risk (VaR). In order to keep the
exposition simple, the paper focuses on a specific construction of VaR based on parametric volatility
models. The method of forecast performance evaluation will also be discussed.

2.1 Construction of Value-at-Risk (VaR)

Although it is often criticised in the literature as an inconsistent measure of Risk, see for example, Artzner
et al. (1999), VaR continues to be an important proxy of risk for regulators. This is supported by the
Basel Accord where VaR is used as a measure of market risk, which banks must appropriately model and
forecast. Given banks are free to forecast VaR based on their own technology, the Basel Accord evaluates
the performance of each bank’s VaR forecast by utilising a back-testing procedure. In a nutshell, the
VaR forecasts for the past 250 days will be compared to the actual market returns. In the case when
the market returns dropped below the VaR forecasts provided by the bank, a violation is recorded. In
general, for a VaR forecast with 99% confident, one would expect approximately 2 to 3 violations in 250
days. Therefore, if the percentage of violations during the back-testing period is more than the desired
confident level then penalty will be imposed on the bank’s capital requirement. Therefore, let p be the
desired confident level, then the objective function for VaR forecasts is

Lv (rt − qi,t) =

∣∣∣∣∣h−1
h∑
t=1

1 (rt − qi,t < 0)− p

∣∣∣∣∣ , (1)
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where rt is the asset’s returns at time t, qi,t is the VaR forecasts for time t from model i based on
information available at τ with τ < t and h is the evaluation horizon. Moreover, 1(A) is an indicator
function such that 1(A) = 0 if A is false and 1(A) = 1 otherwise. Hence, the problem of seeking the
optimal VaR model can be expressed as

qo,t = arg min
qi,t∈Q

Lv (rt, qi,t) , (2)

where Q = {qi,t : i = 1 · · · k} is a set containing all available models for forecasting VaR.

Given the rapid development in parametric volatility models in the last two decades, it is natural to
construct VaR forecasts based on these models. The method is equivalent to construct a confident intervals
for the forecasts of the conditional mean (returns) accommodating potential dynamic in the conditional
variance. Mathematically,

qi,t = ri,t − κ
√
hi,t (3)

where ri,t and hi,t are the return forecast and the conditional variance from model i for time t based on
information available at time t− 1 (ie τ = t− 1), respectively and κ is a critical value such that

P (ηi,t < κ) = p, ∀t > 0

with

ηi,t =
rt − ri,t√

hi,t
.

2.2 VaR Forecast Evaluations

There are two main issues concerning forecast evaluations for VaR forecasts. The first concerns with the
forecast criteria such as equation (1). Essentially one is interested in testing

H0 : E [Lv (rt − qi,t)] = 0, H1 : E [Lv (rt − qi,t)] 6= 0

given a confident level, p. Under the null hypothesis, the number of actual violations is not signifi-
cantly different to the expected violations implied by the confident level, p. Christoffersen (1998) pro-
posed a likelihood ratio test for this purposes. Consider the indicator sequence, {1t}Tt=1 constructed
from a given interval forecast, such that 1t = 1 (rt < qi,t). The likelihood under the null hypoth-
esis is L

(
p; {1t}Tt=1

)
= (1− p)T0 pT1 and the likelihood under the alternative is L

(
p′; {1t}Tt=1

)
=

(1− p′)T0 p′T1 , where T1 = T−1
∑T
t=1 1t and T0 = 1 − T1. Therefore, the likelihood ratio test for

unconditional coverage is

LRUC = −2
[
logL

(
p; {1t}Tt=1

)
− logL

(
p̂′; {1t}Tt=1

)]
(4)

where p̂′ = T1/T and LRUC
a∼ χ2(1). The basic idea is to compare the expected percentage of violation

with the actual percentage of violation given a sample and a set of VaR forecast. If the VaR forecasts are
accurate then the actual number of violations should not be statistically different to the expected number
of violations.

In addition to the actual number of violations. It is also important to examine if the violations are corre-
lated. Theoretically, the violations should occur independently from each other. Under the assumption of
a first-order Markov chain. Diebold and Lopez (1996) and Christoffersen (1998) developed a likelihood
ratio test of independence.

Consider a first order Markov chain for the indicator sequence, {1t}Tt=1, the unrestricted transition matrix
is

Π′ =
(

1− p01 p01

1− p11 p11

)
(5)
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where pij = P (1t+1 = j|1t = i). The associated likelihood function is L
(
Π′|{1t}Tt=1

)
=

pT11
11 p

T01
01 (1− p11)T10 (1− p01)T00 where Tij is the number of observations such that 1t = j and

1t−1 = i. Thus, the unrestricted transition matrix can be estimated by pij = Tij/T . Moreover, imposing
independence is equivalent to applying the restriction p10 = p01 and therefore the restricted transition
matrix is

Π =
(

1− p p
1− p p

)
(6)

which leads to the likelihood function, L
(
Π|{1t}Tt=1

)
= (1− p)T0 pT1 where p can be estimated by

p̂ = T1/T . Thus, the likelihood ratio test for independence is

LRIND = −2
[
logL

(
Π|{1t}Tt=1

)
− logL

(
Π′|{1t}Tt=1

)]
(7)

with LRIND
a∼ χ2(1). Notice this test does not concern if p̂ is different to the given statistical confidence

level p, the sole objective of this test is to examine the independence between violations. However, it is
possible to combine the tests of unconditional coverage and independence by simply combing the two
test statistics, resulting in the conditional coverage test, namely

LRCC = LRUC + LRIND
a∼ χ2(2) (8)

for the following hypothesis:

H0 : E (1t − p) = 0, H1 : E (1t − p) 6= 0.

2.3 Forecast Combination of VaR

Let yt denotes the variable of interest, or the targeted variable, and yi,t denotes the forecast of yt by
model i at time τ with τ < t. Moreover, assume the forecasts from each model is combined following
the specification of a continuous function g (y1,t, · · · , yk,t;w) with a vector of parameters, w, then the
forecast combination problem given a particular forecast criterion at time τ is:

ŵ = arg min
w∈W

L [yt − g (y1,t, · · · , yk,t;w)] . (9)

The problem is to seek the vector ŵ so that the forecast criterion, L, is minimised with a given com-
bination function g. Obviously, the determination of ŵ depends on the choice of the forecast criterion,
L, and the specification of g. L is typically chosen to be Mean-Squared Errors (MSE), Mean Absolute
Deviations (MAD) or Mean Percentage Absolute Errors (MAPE). The general forecast combination is
an aggregate of information from the various forecasts based on the different models resulting in a sum-
mary measure. Bates and Granger (1969), Clemen (1989), Hogarth (1989), Makridakis (1989), Winkler
(1989), Hibon and Makridakis (2000), Clements and Hendry (2001), Timmermann (2005), Guidolin and
Timmermann (2007) among others, have established that combining forecasts implies incorrect specifica-
tion of the underlying models. These studies proposed that each model captured a different aspect of the
data generating process. Therefore, forecasts from these models will each contain some level of indepen-
dent information. This information is due to the assumptions made within the specific models about the
inter-variable relationships and the importance placed on individuals variables. Combining multiple fore-
casts captures numerous partially overlapping interpretations of the underlying data generating process,
as argued by Clements and Hendry (2001).

Clearly, the forecast combination problem can be modified for VaR. Define the actual VaR, qt, such that
P (rt − qt < 0) = p for some level of confident, p. The forecast criterion, in this case, is Lv , as defined
in equation (1). Therefore, the forecast combination problem for VaR is

ŵ = arg min
w∈W

Lv [rt − g (q1,t, · · · , qk,t)] . (10)
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Similar to the standard problem, the problem above cannot be solved in practice due to the unavailability
of rt at time τ . Therefore, weighting schemes are proposed to approximate ŵ. In the case of simple
averaging,

g (q,t, w) = w′q,t (11)

with w = i/k where q,t = (q1,t, · · · , qk,t)′ and i is a column vector of 1’s. An alternate weighting
schemes is based on Quantile Regression (QR) as proposed originally by Bassett and Koenker (1978).
The idea is to seek the linear combination that best fitted the (1−p)th quantile of existing return. Formally,

Qν (rt|q,t) = w0 + w′q,t (12)

where Qν (rt|q,t) denotes the νth quantile of rt conditional on q,t. The weight vector can be found by
solving

(w̃0, w̃
′)′ = arg min

(w0,w′)′∈Rk+1

∑
εt<0

p |εt|+
∑
εt≥0

(1− p) |εt| (13)

where εt = rt − w0 − w′q,t.
An objective of this paper is to compare the forecast performances between the two weighting schemes.
VaR forecasts from four different models will be constructed and combined based on the two weighting
schemes and the forecast performances will be compared using the forecast criterion as defined in equa-
tion (1). The forecast performances of each of the individual models will also be discussed. The details
of model considered in the paper as well as the data used for the empirical sections will be discussed in
the next section.

3 MODELS AND DATA

This paper considered four different volatility models to construct four different VaR forecasts. The
four models considered are the Exponential GARCH model of Nelson (1991), the Stochastic Volatility
originated in Taylor (1986) and popularized by Harvey et al. (1994) and Harvey and Shephard (1996),
Integrated GARCH model of Engle and Bollerslev (1986) and Implied Volatility Model.

These models are chosen because they assume different dynamics on the conditional variance of the asset
returns and they are not nested within each other. This satisfies the condition of information independence
as discussed in previous sections. Given the rapid theoretical developments in estimating and testing these
models, the readers are referred to the aforementioned references for technical details.

The data used in this paper are the daily returns of S&P 500 and FTSE price index from 3 January 1996
to 3 August 2010 provided by DataStream. Let Pt denotes the price at time t, the returns are calculated
as: rt = 100 ∗ log (Pt/Pt−1).

4 EMPIRICAL RESULTS

The p-values of the conditional coverage tests for the VaR forecasts from the six different models for
both S&P and FTSE can be found in Tables (1), respectively. Interestingly, forecasts from both Sim-
ple Weighted Average and IGARCH passed the conditional coverage test for both series. That is, both
forecast series did not have significant different number of violations at the confidence levels and the vi-
olations appeared to be independent from each other. This is also true for EGARCH for FTSE but not for
S&P while the SV model failed the conditional coverage test in both cases. The performance of Quantile
regression is also a little disappointing. It passed the conditional coverage test at 5% level but not at 1%
or 2% for both indexes. This is not overly surprising as the expected numbers of violations are small at
the 1% and 2% levels. This implies the number of observations available for estimating the lower quantile
is very small and therefore producing less reliable results. However, it passed the conditional coverage
test at 5% where the number of observations available for estimating the quantiles is sufficient to produce
more reliable estimates.
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The forecast performance of each model for both indexes as measured by comparing the percentage of
actual violations with the expected percentage of violations, namely the specified confidence level can be
found in Tables (2). Interestingly, the Simple Weighted Average was the most robust in terms of forecast
performance as being consistently the best or second best across all confidence levels and indexes. More
importantly, QR performed really well at 5% but not at 1% or 2%. This is consistent with the results of
the conditional coverage test and provided further evidence to support the aforementioned reasons for the
poor results from QR. The performance of IGARCH was also robust and consistent with the results from
the conditional coverage test.

Overall, the paper obtained evidence that forecast combination can be beneficial in forecasting VaR
thresholds. Similar to the case of forecasting conditional mean, the Simple Weighted Average seemed
to be more robust and superior than the more sophisticated QR technique. However, this might be due
to limited number of observations at one lower quantile as confidence level decrease. At the confidence
level where all quantiles have sufficient observations, QR could in fact produce better results than the
Simple Weighted Average.

S&P FTSE
Models 1% 2% 5% 1% 2% 5%

QR < 0.001 0.009 0.731 < 0.001 < 0.001 0.734
SWC 0.951 0.743 0.606 0.613 0.815 0.631

EGARCH < 0.001 0.001 0.017 0.223 0.323 0.038
IGARCH 0.407 0.252 0.481 0.632 0.815 0.366

SV < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
IV 0.007 < 0.001 < 0.001 0.007 < 0.001 < 0.001

Table 1. LR Test for Conditional Coverage

Models S&P FTSE
QR 6 3 1 6 4 1

SWC 1 1 2 2 2 2
EGARCH 4 4 4 3 3 4
IGARCH 2 2 3 1 2 3

SV 6 6 6 6 6 6
IV 3 5 6 4 5 6

Table 2. Model Performance (Rank)

5 CONCLUSION

This paper investigated the potential benefit of forecast combination in forecasting VaR threshold. It pro-
vided a theoretical framework for analysing forecast combination in the second moment and it compared
the forecast performances in VaR thresholds between two different forecast combination methods along
with 4 different volatility models. The results suggested that forecast combination could in fact, improve
forecast accuracy. Moreover, similar to the forecast combination problem for conditional mean, the Sim-
ple Weighted Average is the most robust method of combining forecast. However, a technique based
on quantile regression can be superior, especially when the number of observations in each quantile are
sufficient to ensure reliable estimates.
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It is important to note that the construction of VaR forecasts and the choice of volatility models were very
limited in the study. No comparison was made between different distributional assumptions and there
was no comparison between non-parametric volatility, semi-parametric and parametric models. However,
even under such limited set of models, at least one type of forecast combination technique can produce su-
perior forecast that satisfied both unconditional coverage (number of actual violations is not significantly
different to the expected number of violations) and independence (violations are independent) criteria.
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