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Abstract:

A structural break refers to a shift in the parameters of the model of interest. When the conditional
relationship between the dependent and explanatory variables contains a structural break, estimates of
model coefficients will be inaccurate across different regimes. As such, estimations that do not account
for structural breaks will be biased and inconsistent.

Ever since the seminal work of Chow [1960], there have been numerous other tests proposed for detecting
various forms of structural breaks in different contexts. Chow [1960] proposed an F-statistic to detect a
single structural break with known location in the context of a linear model. One of the most commonly
used tests is the Andrews [1993], which generalised Chow [1960] to the Sup Wald, LR, and LM tests
for linear models when the position of the breakpoint is unknown. Other important contributions to
the literature include Bai and Perron [1998] and Bai [1999], both of which constructed tests that detect
multiple structural breaks in linear models.

Studying the properties of such tests is particularly important because the theoretical distribution of most
of the test statistics have only been identified asymptotically, but the same critical values are also used
for smaller sample sizes in practice. Furthermore, the theoretical properties of the test statistics are
usually established only under certain restrictions such as i.i.d. assumptions that may not hold in practice
for various reasons. While present literature does include studies of structural break tests where the
changepoint is unknown, such as Diebold and Chen [1996], and Bai and Perron [2004], these have mostly
been restricted to linear regression models. To our knowledge, no study has been carried out thus far to
evaluate the properties of any structural break test in the context of binary choice models, such as probit
models, which will be the main contribution of this paper.

This paper considers the size and power of the three Andrews [1993] Sup-type tests when applied to
probit models with different levels of autocorrelation and varying sample sizes using a simulation-based
approach similar to Diebold and Chen [1996], which tested the sizes of the tests in the linear regression
model . We carry out the same procedure with a different data generating process, but also further the
study by comparing the results in the linear model with that of a probit model. In addition, we also
consider the power of the tests in both models, as well as a few different levels of data trimming.

The main findings of this paper are that the shortcomings of the Andrews [1993] Sup-type tests in linear
models are magnified in probit models. In particular, the tests exhibit greater size distortion, lower power,
and become more imprecise in identifying the position of the structural break when the samples are small
or when the errors are autocorrelated.
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1 BINARY CHOICE MODELS AND THE ANDREWS [1993]

This paper considers two models, one linear and one probit, both of which consist of a single explanatory
variable. Under the null hypothesis of no structural change, the restricted models are as follows:

Linear model: y∗t = βxt + εt , Probit model: yt =

{
1 if y∗t < 0
0 otherwise

, (1)

The explanatory variable, xt, and error terms, εt, are the same across both models, but they influence the
dependent variable, yt, in different ways. In the linear model, y∗t has a linear relationship with xt and εt,
with the relative influence of both inputs depending on the magnitude of the coefficient, β. This implies
that β has a direct impact on yt. In the probit model, y∗t is an unobserved latent variable that influences
the observed binary variable yt. As a result, β no longer impacts yt directly and instead influences the
probability of yt taking on one of two values.

In the linear case, the unrestricted model containing a single break is defined as

y∗t = β1xt + εt, t = 1, ..., πT,
y∗t = β2xt + εt, t = (πT + 1), ..., T., (2)

while the unrestricted probit model is

yt =

{
1 if y∗t < 0
0 otherwise

, t = 1, ..., πT,

yt =

{
1 if y∗t < 0
0 otherwise

, t = (πT + 1), ..., T,
(3)

where π denotes the proportion of observations before the breakpoint in the unrestricted model being
estimated, and πT denotes the position of the breakpoint. Under the Andrews [1993] framework, the null
hypothesis assuming no structural break in the data is tested against the alternative of a single structural
break:

H0 : βt = β for all t ≥ 1 for some β0 ∈ B ⊂ Rp.

H1T : βt =

{
β1(π) for t = 1, ..., πT
β2(π) for t = πT + 1, ...

,

In the linear model, W, LM, and LR will be

W (π) = T

[
ε̂T ε̂− ε̂T1 ε̂1 − ε̂T2 ε̂2

ε̂T1 ε̂1 + ε̂T2 ε̂2

]
, LM(π) = T

[
ε̂T ε̂− ε̂T1 ε̂1 − ε̂T2 ε̂2

ε̂T ε̂

]
, LR(π) = T ln

[
ε̂T ε̂

ε̂T1 ε̂1 + ε̂T2 ε̂2

]
,

with W being asymptotically equivalent to the Chow [1960] test. In the probit model, we define l1(.) and
l2(.) as the log-likelihood before and after the break respectively. The log-likelihood of the unrestricted
model will then be l1(.) + l2(.). When the model is correctly specified with spherical errors, the test
statistics are

W T (π) = T
(
β̂1(π)− β̂2(π)

)T (
V̂1(π)/π + V̂2(π)/(1− π)

)−1 (
β̂1(π)− β̂2(π)

)
,

LMT (π) =
1

π(1− π)

(
∂l1(β̂)

∂β̂

)T [
V̂ (π)−1

](∂l1(β̂)

∂β̂

)
,LRT (π) = 2

[
l1

(
β̂1

)
+ l2

(
β̂2

)
− l
(
β̂
)]
,

where V̂ (π) is estimated using the negative of the hessian matrix in accordance with the information ma-
trix equality.

(
∂l1(β̂)

∂β̂

)
is the first derivative of the log-likelihood of the subsample before the breakpoint

in the unrestricted model evaluated at the maximum likelihood estimate for the restricted model.
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When testing the null of no structural break against the alternative of a single structural
break, the statistic that is chosen from the three above will then be computed for ev-
ery observation within a pre-defined region, Π. The corresponding test statistics are then
supπ∈ΠWT (π), supπ∈Π LMT (π), and supπ∈Π LRT (π). Π must be bounded away from zero and one
in order for the the test statistics to converge in distribution. Andrews [1993] provided critical values for
various choices of Π, but also arbitrarily suggested Π = [0.15, 0.85], with 15% trimming on both ends of
the sample.

2 CRITICAL VALUES

2.1 Asymptotic critical values

The critical values from Andrews [2003] that are relevant to our simulations are as follows, with π denot-
ing the proportion of trimming on each end:

Significance level
π 10% 5% 1%
.15 7.12 8.68 12.16
.10 7.58 9.11 12.59
.05 8.13 9.71 13.17

The critical values shown above are only valid asymptotically, and the test statistics are known to exhibit
varying levels of size distortion when those critical values are used in small samples. An alternative
method of obtaining critical values is to use bootstrapping.

2.2 Bootstrapping

Bootstrapping, which involves generating bootstrap pseudo-samples through resampling of the data avail-
able, has frequently been shown to improve the finite-sample performances of various hypothesis tests. In
particular, Diebold and Chen [1996] affirmed a size improvement for the Andrews [1993] tests in small
samples even when the data exhibits high persistence.

We carry out parametric bootstrapping using the fast bootstrap procedure introduced in Davidson and
MacKinnon [1999] and evaluated in Lamarche [2004]. Unlike the usual procedure where B bootstrap
samples are generated at each iteration, the fast bootstrap generates a single bootstrap sample using the
using a new set of N(0, 1) errors at each iteration. The test statistics generated from these bootstrap
samples are then used as an approximation of the bootstrap distribution, with the critical values obtained
from corresponding percentiles. Davidson and MacKinnon [1999] showed that the fast bootstrap is valid
when the test statistic and bootstrap DGP are independent or asymptotically independent, a condition that
is satisfied in parametric bootstrapping when the parameters are estimated under the null distribution,
which is the case in this paper.

3 SIMULATION DESIGN

The linear and probit models described in equations (1)− (3) are simulated with xt and εt defined as

xt = et, et ∼ N(0, 4), and
εt = ρεt−1 + ut, ut ∼ N(0, 1), t = 1, ..., T.

Such a specification ensures that the performances of the tests are fully comparable across both models,
since the inputs, xt and εt, are the same in both models. At the same time, varying ρ allows us to
investigate the effect of autocorrelation on the test statistics. For this reason, the models are estimated
without accounting for persistence in the errors.

The simulation procedure is as follows:

1. Simulate the linear and probit data as specified in (1) when testing for size and (2)− (3) when for
power with xt and εt defined above.
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2. Estimate β̂ in the linear model using OLS and in the probit model using maximum likelihood and
Compute supπ∈ΠWT (π), supπ∈Π LMT (π), and supπ∈Π LRT (π).

3. Generate a T -vector of bootstrap residuals, εbt , where εbt ∼ N(0, 1).

4. Use εbt to generate a bootstrap sample under the null for both models by replacing εt with εbt in (1).

5. Estimate β̂b in both bootstrap samples and compute the bootstrap test statistics.

6. Repeat steps 1 to 6 for N iterations.

7. Determine the asymptotic size/power for each test based on the proportion of iterations in which
the test statistic exceeds the asymptotic critical values in section 2.2.

8. Determine the bootstrap size/power for each test based on the proportion of iterations in which
the test statistic exceeds the bootstrap critical values, defined as the value corresponding to the
(1− α)× 100th percentile of the N bootstrap test statistics, where α is the selected nominal size.

When testing for size, we formulate the models as defined, with β = 1 throughout. When assessing power
against a single structural break, we set a structural break at 0.5T , and simulate two specifications with
β̂1 = 1, β̂2 = 1.5, and β̂1 = 1, β̂2 = 2 . When it comes to power against two breaks, we set structural
breaks at 0.3T and 0.7T and three specifications with β̂1 = 1, β̂2 = 1.5, and β̂3 taking on values of 2, 1,
and 0.5. We run simulations for values of ρ between 0 and 0.99 in increments of 0.10, and sample sizes
T = 10, 30, 50, 100, 250, 500, 1000. All simulations are run over N = 1000 iterations.

4 RESULTS

We present our results compactly surface plots, constructed via OLS regressions against third-degree
expansions and cross-products of the simulation parameters. For brevity, only selected results for 15%
trimming and 10% significance level are shown. Asymptotic and bootstrap results are denoted by the
prefix Asy and Boot respectively, followed by the name of the test and the suffixes −L for linear models
and −P for probit models.

4.1 Size

The surface plots of the sizes in linear models mirror the results shown in Diebold and Chen [1996].
The empirical sizes of the asymptotic test statistics converge to their nominal sizes when the sample size
is large, as expected. In smaller samples, AsySupLM − L is undersized, while AsySupLR − L and
AsySupWald−L are oversized. Bootstrapping reduces the size distortion caused by the smaller sample
size, as evidenced by the flatter surface of BootSupLM −P . Diebold and Chen [1996], however, found
that the the bootstrap test statistics remained close to perfect in the presence of high autocorrelation, while
we observed a slight positive distortion in BootSup− L. This can be attributed to a difference in model
specifications, as well as our use of the fast parametric bootstrap as opposed to Diebold and Chen [1996]’s
empirical bootstrap.
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Figure 1. Size of the Andrews [1993] test

Figure 1a: Size distortion of AsySupLM − L Figure 1b: Size distortion of linear BootSupLM − L

Figure 1c: Size distortion of AsySupW − P Figure 1d: Size distortion of BootSupW − P

The size results for AsySup− P , however, stand in stark contrast to their linear counterparts. While the
asymptotic test statistics do converge to their nominal sizes, the convergence is much slower than in the
linear models. AsySupW − P , in particular, remains undersized even when the sample size is 500. In
addition, the effect of high autocorrelation is especially harsh on the test statistics when applied to Probit
models, with the empirical sizes becoming oversized to unmanageable levels. Somewhat peculiarly, this
size distortion worsens as the sample size increases, perhaps because the effects of autocorrelation build
up fairly slowly and require a larger sample size to have an impact on the test statistic. Similar to the
linear case, bootstrapping greatly reduces size distortion in smaller sample sizes, but this only occurs
in the probit model when the autocorrelation is low. Under higher levels of persistence, bootstrapping
appears to exacerbate the size distortion, although this most likely occurs because the undersizing of the
asymptotic test statistics cancels some of the oversizing caused by the autocorrelation. Overall, these
results suggest that correcting for the presence of autocorrelation is particularly important when testing
for structural breaks in Probit models, more so than in linear models.

4.2 Power

The surface plots show that the power of the tests increase with the sample size and eventually converge to
1. It was observed in the linear case thatAsySupW−L had the highest power, followed byAsySupLR−
L and then AsySupLM − L. It has to be noted, however, that this difference is most likely due to size
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Figure 2. Single break: β1 = 1, β2 = 1.5

Figure 2a: Power of AsySupLR− L Figure 2b: Power of linear AsySupLR− P

distortions, since AsySupW − L has the highest size distortion of the three. Autocorrelation has a
substantial negative impact on power, with the loss in power becoming more noticeable as the sample
size increases.

Comparing the probit results with the linear results, we observe the same patterns in AsySup − P as
described above, except that AsySup − P generally has considerably less power than its linear coun-
terparts. While the effect of autocorrelation on power appears to be diminished in the probit model, this
is again most likely due to the test statistics being grossly oversized in the probit model. Indeed, the
rejection rates of the tests is barely higher than their empirical sizes when persistence is high. The other
simulations also yield a few other interesting observations. When we set β2 = 2, the power of all the
tests increased, which shows that the magnitude of the break has a positive effect on Sup-type tests. In
addition, we also observed slight power gains under high autocorrelation when the level of trimming in-
creases, which concurs with the results of Bai and Perron [2004]. Finally, we also found that the tests
became less precise in identifying the position of the identified breakpoint as the level of autocorrelation
increases. This was once again exacerbated in the Probit models as compared to the linear ones.

The simulations containing multiple breaks show that the power of the test is greatly reduced when the
breakpoints are in opposite directions, a result that was also seen in Bai and Perron [2004]. The power
of the test statistics when β3 = 2 was greater than a single change from β1 = 1 to β2 = 1.5, but
less than a single change to β2 = 2. In contrast, the power of the tests when β2 = 1.5 and β3 = 1
was the lowest out of our simulation specifications. We observed, once again, that this result was more
noticeable in the probit models. This has implications on data sets containing temporary structural breaks
and models involving regime-switching, since the tests will find it difficult to pick up these breaks. The
specification in which β1 = 1, β2 = 1.5, and β3 = 0.5 involves a second structural break that is greater
in magnitude and in the opposite direction from the first. In this case, the tests exhibited greater power
than a single change to β2 = 1.5, but less than a staggered change with β2 = 1.5 and β3 = 2. This
seems to suggest that the loss in power occurring due to the breaks of opposite sign cancelling out can be
alleviated provided that one of the breaks has a larger magnitude than the other.

5 CONCLUSION

This paper presented a simulation analysis comparing the size and power of the Andrews [1993] Sup-type
test statistics under finite-samples and varying degrees of autocorrelation in Probit and linear models. Our
results for linear models match with previous studies carried out in literature, but also showed that many
of the shortcomings of the test statistics in linear models are magnified in probit models. In particular,
the test statistics had larger size distortions, lower power, and were more inaccurate in identifying the
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location of the breakpoint. While some of these problems could be solved in the linear models through
bootstrapping, it was found that bootstrapping could only solve the problems caused by smaller samples
but not the ones associated with autocorrelation.
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