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Abstract:

This paper suggests combining multiple forecasts from discrete choice models for the FOMC decisions
on the target rate instead of relying on one specific model. The main advantage of combining forecast
is to improve forecast accuracy, as first shown by Bates and Granger [1969]. There are several other
advantages to forecast combination; for example it allows to deal with a larger number of variables than
a univariate model or it may be more robust to potential breaks in trends and intercepts. Timmermann
[2006] provides a thorough overview of the sizeable forecast combination literature.

First, since there is limited support for combining discrete outcomes, this paper considers combining
probability forecasts estimated from the probability mass function associated with the one-period-ahead
value of random variables. Furthermore, it is shown that probability forecasts from combining discrete
choice models instead of combining probability forecasts from discrete choice models, do not yield a
discrete choice model with tractable properties. Combination of probability forecasts has already been
used in the context of aggregating probability distributions of expert opinions, as discussed in Genest and
Zidek [1986] and Clemen and Winkler [1999]. On the methodological side, Kamstra and Kennedy [1998]
and Clements and Harvey [2009] among others, investigate different techniques for combining probability
forecasts as well as their properties. Second, the paper proposes to use of log and quadratic scoring rules
introduced by Brier [1950] and Good [1952], both to evaluate forecasting accuracy of models and to
construct adaptive weights for combination. The paper shows that forecast combination achieves greater
accuracy in terms of scoring rules. Although probability scoring rules have been applied in the economics
and finance literature, for example by Diebold and Rudebusch [1989], Ghysels [1993] and Anderson and
Vahid [2001], it has not been employed as a way to combine probability forecasts. Third, the proposed
methodology is implemented empirically in forecasting the Fed decisions to change the target rate. The
empirical exercise illustrates well that combining probability forecasts improve out-of-sample forecast
performance especially when they are combined using weights based on either log or quadratic scoring
rules. These results utilise the data and models used by Hu and Phillips [2004a] as a benchmark. The
effect of sampling variation around probability forecasts are also assessed through simulations, which
follows to some extend the work by McCabe et al. [2011].

The paper is organised as follows. Section 2 sets out the discrete choice model. Forecast combination
methodology is discussed in Section 3. Baseline results and robustness checks are provided in Section
4. Section 5 discusses the assessment of the effect of sampling variation associated with probability
forecasts. Concluding remarks are presented in Section 6.

Keywords: Forecast combination; Probability forecast; Discrete choice models; Monetary policy deci-
sions.
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1 FORECASTING POLICY DECISIONS

1.1 A triple choice model

Following Dueker [1999], the model is

r∗t+1 = x′

tβ − ut+1 (1)

y∗

t+1 = r∗t+1 − rt (2)

where bothy∗

t+1 andr∗t+1 are unobservable,xt is aK × 1 vector of observable information relevant to
the forecast andβ is aK × 1 vector of parameters.ut+1 is aniid error with distribution functionΦ. If
Φ(·) is the normal (or logistic) distribution with mean zero and varianceσ2, then the model is the usual
ordered probit (or logit).r∗t+1 is the optimal policy rate and it is assumed to exist.rt is the federal funds
target rate set by the FOMC in its last meeting. Fed decisions about the target interest rate are classified
into three categories: “cut”, “no change” or “hike” the interest rate. Hence,

yt+1 =







−1 if y∗

t+1 < µ1

0 if µ1 ≤ y∗

t+1 ≤ µ2

1 if y∗

t+1 > µ2

(3)

is the observed decisions by the Feds. For example, if the difference between the optimal policy rate
(r∗t+1) and the actual federal funds target rate (rt) is greater than the thresholdµ2 then the model would
predict a rate hike (yt+1 = 1). This divergence would need to be substantial to result in a change in the
target rate as policy actions are often costly.

In the discrete choice model with error distributionΦ, the probability distribution ofyt+1, Pr(yt+1 = j),
depends on(xt; θ) with θ = (β′, µ1, µ2, σ

2)′. For simplicity, it is denoted asPj(xt; θ), and is given by

P−1(xt; θ) =1 − Φ(x′

tβ − rt − µ1)

P0(xt; θ) =Φ(x′

tβ − rt − µ1) − Φ(x′

tβ − rt − µ2) (4)

P1(xt; θ) =Φ(x′

tβ − rt − µ2)

Hu and Phillips [2004a] defines an indicator function,Λ(t, j), whereΛ(t, j) = 1 when{yt+1 = j}. The
log-likelihood for the samplet = 1, . . . , T is

log LT (θ) =

T
∑

t=1

J
∑

j=0

Λ(t, j) log Pj(xt; θ) (5)

Maximising the above log-likelihood for the multiple choice model yields estimates ofθ =
(β′, µ1, µ2, σ

2)′. In this paper, the error distributionΦ is specified as a probit following Hu and Phillips
[2004a] and Kim et al. [2009]. Furthermore, some of the aggregate macroeconomic time series used as
covariates (xt) in model (1) by the above mentioned authors, are found to be nonstationary. The same
holds for the dataset used in this paper (See section 3 for details). As shown in Hu and Phillips [2004b],
standard methods for statistical inference are invalid asymptotically when the estimation process involves
integrated processesxt.

1.2 Nonstationary data series

Conventional asymptotic theory does not hold for probit or logit regression when variables are non-
stationary. Park and Phillips [2000] shows that in the case of binary choice models with nonstationary
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explanatory variables, a string of similar decisions (same proportion of unit choices) converges to a ran-
dom variables that follows an arc sine law with probability density1/(π

√

y(1 − y)). Park and Phillips
also shows that the maximum likelihood estimator is consistent, but it has a dual rate of convergence. Hu
and Phillips (2004a, 2004b) and Phillips et al. [2007] extend the results obtained from Park and Phillips
[2000] to polychotomous choice models with parametric thresholds determining the choices. These pa-
pers propose an expanded range of arc sine laws which allows for diverse distributional shape that permits
broken consecutive sequences of similar decisions. The maximum likelihood estimator is also conver-
gent but has either single or dual rate of convergence depending on whether there are only nonstationary
variables or a mix of stationary and nonstationary variables in the system.

If the vectorxt contains integrated processes, then the thresholds are sample size dependent. Hu and
Phillips [2004b] scale thresholds by the sample size such that they have the same order of magnitude as
the latent variable (y∗

t+1) when the information set contains integrated time-series, as such

µiT =
√

Tµi i = 1, 2

Such correction for nonstationarity is not primordial insofar as forecasting accuracy is concerned. It is,
however, important when estimating thresholds and conducting statistical inference.

2 FORECAST COMBINATION

In model (1) - (3), the combination problem can be reduced to combining the implied continuous
variables,r∗t+1 or Pj(xt; θ). As generalised in Timmermann [2006], the aggregator that solves the
combination problem mapsN × 1 vector of forecastẑt+1 ∈ R

N to a c × 1 summary measure
C(ẑt+1; ωc) ∈ R

c ⊂ R
N with c < N . ωc are the combination parameters of dimension less or equal to

N . If that summary measureC(ẑt+1; ωc) ∈ R
1, then it is a combined point forecast.

The N × 1 vector r̂∗

t+1 containingN one-step ahead forecasts of the optimal policy rate can be

simply combined as suchC
(

r̂∗

t+1; ωc

)

= 1
N

∑N

i=1 r̂
∗(i)
t+1, i = 1, . . . , N assuming equal weights,

ωc = ( 1
N

, . . . , 1
N

), for simplification and witĥr∗(c)t+1 = C
(

r̂∗

t+1; ωc

)

∈ R
1. Hence, the combined point

forecast (̂r∗(c)t+1 ) implies that equation (2) is noŵy∗(c)
t+1 = r̂

∗(c)
t+1 −rt. As discussed in section 1.1, thresholds

(µ1, µ2) are required to predict the FOMC decisions about the target interest rate. These thresholds can-
not be recovered in this combined case, however, as they are nonlinear functions in each model. Even if
the thresholds for the combined model were known and fixed, the probabilities of the combination could
lie outside the interval given by the individual models.

Proposition 1 A simple combination of ordered probit models does not yield an ordered probit model
with tractable properties.
Proof: See Appendix A.

Corollary 1 Proposition 1 also holds for any other monotonic function, such as a Logistic function for
example.

2.1 Combining probability forecasts

Combining probability forecasts provides an intuitive and trivial alternative overcoming the limitations
exposed in proposition 1. Although the idea of combining probabilities is not new, the literature has
typically focused on specialised issues such as aggregating probability forecasts from expert opinions.
Genest and Zidek [1986] addresses the problem of aggregating expert opinions which have been ex-
pressed in some numerical form in order to reflect individual uncertainty vis-a-vis a quantity of interest.
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Clemen and Winkler [1999] and Genest and Zidek [1986] focus on methods of aggregation with desirable
properties rather than accuracy.

Kamstra and Kennedy [1998] concentrates on how to combine individual probability forecasts and/or
qualitative forecast, in a computationally attractive manner, through use of logit regression. Kamstra and
Kennedy [1998] method encompasses the technique developed by Feather and Kaylen [1989] as a special
case. Clements and Harvey [2009] expands the research started by Kamstra and Kennedy [1998] and
studies different methods for combining probability forecasts in an optimal manner and the properties of
various combination for various data generating processes. The authors argue that the optimal form of
combination is unknown as the data generating process of the forecasts and the event being forecast is not
known.

In the current setting, at every time periodt each modeli (i ∈ {1, . . . , N}) produces a probability forecast

P
(i)
j,t+1(x

(i)
t ; θ(i)) for each statej = −1, 0, 1. Hence, the combined one-step ahead probability forecast,

P̂
(c)
t+1, simply follows fromP̂

(c)
t+1 =

∑N

i=1 ωi P̂
(i)
t+1(x

(i)
t ; θ̂(i)) whereP̂ (i)

t+1 =
(

P̂
(i)
−1, P̂

(i)
0 , P̂

(i)
−1

)

′

is a3×1

vector withθ̂(i) as the parameter vector for the ith model.ωi is a scalar that weights modeli. An obvious
candidate forωi is the simple average, i.eωi = 1

N
. Section 2.3 discusses an optimal way of combining

these probability forecasts based on scoring rules as an alternative to the simple average. The next section
considers how the forecast accuracy of each model can be assessed.

2.2 Evaluating forecast accuracy with scoring rules

The forecast accuracy can be gauge with scoring rules such as log-score and quadratic score rules. This
provides a cleaner way of assessing forecast accuracy rather than matrices counting the amount of correct
and incorrect predictions against the actual outcome (for example see table?? later). Probability scoring
rules have been used in the economics and finance literature to evaluate business-cycle turning point
and probability forecasts of such turning points (see Diebold and Rudebusch [1989], Ghysels [1993]
and Anderson and Vahid [2001] for example). It has also been used to measure statistical accuracy of
probability forecasts (see Dawid [1986], Winkler [1993], Winkler [1996], Murphy and Daan [1985]).

Consider the current setting in which a model produces three one-step ahead probability forecasts for each
state, namely

(

P̂−1, P̂0, P̂1

)

. If statej happens, then the log-score is given bySl = log(P̂j) similarly to
Ng et al. [2010]. Alternatively, forecast accuracy can be assessed with a quadratic-score rule as follows
Sq = 2P̂j − (P̂ 2

−1 + P̂ 2
0 + P̂ 2

1 )

Unlike the log-score rule, the quadratic-score rule proportionately penalises for assigning non-zero proba-
bilities to state(s) that did not occur. Brier [1950] and Good [1952] are the earliest introduction of scoring
rules. Lastly, note that when conducting multiple one-step ahead forecasts for each modeli over the
period(τ1, τ2), the logarithmic or quadratic scores are averaged over the number of forecasted periods

S̄q
i =

1

τ2 − τ1

τ2
∑

t=τ1+1

Sq
it, S̄l

i =
1

τ2 − τ1

τ2
∑

t=τ1+1

Sl
it

whereSq
it, S

l
it are the quadratic- and log-score obtained for modeli at timet.

2.3 Score based weights

Instead of combining forecasts with a simple average, combination can be derived from each model’s
forecasting performance. This paper proposes two intuitive symmetric weighting methods constructed
from scoring rules, both log-score and quadratic-score rules.
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Definition 1 The score based weights are defined as

ωq
i =

S̄q
i

∑N

i=1 S̄q
i

, ωl
i =

1/|S̄l
i|

∑N

i=1 1/|S̄l
i|

i = 1, . . . , N

whereωq
i , ωl

i are the weight for forecasti based on the average quadratic- (S̄q
i ) and log-score (̄Sl

i)
respectively.

The1/| · | in log-score weights (ωl
i) is constructed as such because the log-scoring rule returns negative

values. From the definition, it is clear that the highest the scoring rule for a forecasting model, the higher
the weight given to its one-step ahead forecast. Furthermore, the composition of the weights changes
over time as the scores are averaged.

3 RESULTS

3.1 Out-of-sample forecast

The out-of-sample forecast is conducted using a recursive forecasting scenario. The sample is cut in
half such that the estimation sample spans over{1, . . . , ⌊T/2⌋} and the one-step-ahead forecast runs in
the sample spanning over{⌊T/2⌋+ 1, . . . , T}.1 Once a month is forecasted, the estimation window is
increased by adding an observation to the sample, and so on until the end of the sample. Out-of-sample
forecasting ability is evaluated for two multivariate models (with 4 and 10 variables) and six combination
models: equal weights combination, log weights combination and quadratic weight combination (with 4
and 10 variables).

The out-of-sample forecast results are presented in Table 1. Both scoring rules indicate that the quadratic
score weighted combination outperforms all other models for most time periods, whether combined or
composed of multiple variables. For the period from 1994 to 2001, however, the log score and quadratic
score are in disaccord. The former favours the quadratic score weighted combination whereas the latter
picks the 4 variables model. Two predictors, annual growth for manufacturer’s new orders and initial
claims for unemployment insurance, appear to have higher scores than the rest across the different time
sample. These two predictors are among the 4 variables selected by Hu and Phillips [2004a]. Note that
the negative quadratic scores are set to zero when computing the combination weights based on quadratic
scoring rules.

4 CONCLUDING COMMENTS

This paper provides a methodology to combine forecasts based on several discrete choice models. It
shows that a simple combination of ordered probit models does not yield an ordered probit model with
tractable properties. Instead, it is easier and more intuitive to combine probability forecasts. Log-scoring
rules and quadratic-scoring rules are used both to evaluate the forecasting accuracy of each model and to
combine the probability forecasts. In addition to producing point forecasts, the effect of sampling varia-
tion is also assessed through simulations. Forecast combination is applied to forecast the Federal Open
Market Committee (FOMC) decisions in changing the federal funds target rate. The empirical results
show that combining forecasted probabilities using quadratic and log scoring rules mostly outperforms
both equal weight combination and forecasts based on multivariate models.

A A PPENDIX : PROOF

Available upon request.

1⌊·⌋ is a floor function for integer round up.
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Table 1: Out-of-Sample Forecasts (Recursive Forecasts)
1994-2001 1994-2008 1994-2010

Models|Scores Log Quadratic Log Quadratic Log Quadratic
Baseline of no change - 0 - 0 - 0.19

Multivariate Models & Forecast Combinations
Multivariate (10 var) -1.43 0.46 -1.36 0.34 -1.79 0.22
Multivariate (4 var) -1.00 0.57 -0.95 0.47 -1.40 0.33

Equal weights (10 var) -1.23 0.29 -1.09 0.32 -1.02 0.36
Equal weights (4 var) -1.00 0.40 -0.88 0.45 -0.86 0.46
Log weights (10 var) -1.19 0.31 -0.88 0.46 -0.93 0.43
Log weights (4 var) -1.00 0.39 -0.79 0.51 -0.83 0.48

Quadratic weights (10 var) -1.18 0.31 -0.81 0.50 -0.87 0.46
Quadratic weights (4 var) -0.99 0.40 -0.78 0.52 -0.83 0.48

Univariate Models
M2 -1.31 0.27 -1.04 0.37 -1.04 0.36

Unemployment claim -1.09 0.40 -0.90 0.50 -1.10 0.44
Consumer Confidence -2.22 0.18 -1.79 0.13 -1.12 0.33

New orders -0.83 0.51 -0.84 0.48 -0.93 0.40
Total Capacity Util. -1.82 0.09 -1.05 0.36 -0.93 0.43
Unemployment rate -2.40 0.12 -1.71 0.13 -1.26 0.25

NAPM -1.34 0.23 -1.73 0.17 -1.68 0.15
Average Working Hrs -2.86 0.06 -2.51 -0.07 -1.73 0.07

Industrial Prod. -2.83 0.12 -2.20 -0.02 -1.62 -0.01
Core CPI -2.77 0.08 -2.02 0.05 -1.50 0.10

Notes: The numbers in the table are the log and quadratic scoringrules as introduced in section 2.2.Baseline of no changemodel
corresponds to predicting no changes in the interest rate throughout the forecasting sample.Multivariable (10 var)is a model with
all 10 regressors.Multivariable (4 var)is the model selected by Hu and Phillips [2004a] containing initial claim for unemployment,
annual growth of M2, Consumer Confidence, annual growth of manufacturers’ new orders (Appendix B describes the data).Equal
weights (10 var)combines the probability forecasts of 10 univariate models featuring all 10 variables.Equal weights (4 var)
combines 4 univariate models for the same 4 variables as inMultivariable (4 var). Log weightsandQuadratic weightswith 10 and
4 variables refer to the models combining probability forecasts following definition 1 in section 2.2. The best performing models in
each subcategory are shaded.

B APPENDIX : DATA

Available upon request.
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